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Abstract
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Climate change is a subject that has been largely addressed 
from both macroeconomic and energetic standpoints. 
Integration of climate variables and natural capital into 
the traditional economic framework can appear conflicting 
with the notion of infinitely growing economies exploiting 
finite resources, which questions the sustainability 
of neoclassic economic growth models. Moreover, the 
temporal dimension is of paramount importance and the 
integration of inter-temporal utility is not a trivial issue. 
The construction of complex general equilibrium models 
is a way to model the response of economic systems to 
shocks. Their use is somewhat limited because of their 
lack of transparency, computational scaling issues and 
non-equal attitudes toward uncertainty. If they are 
properly calibrated to model scenarios of interest, these 
models can however constitute an additional module 
for assisting short- and medium-term decisions. The 
dynamic integrated climate economy (DICE) seminal 
model of William Nordhaus allows to set an optimal global 
control trajectory with respect to a set of constraints 
and assumptions. Similar and more sophisticated 
macroeconomic models can provide the optimal allocation 
with respect to long-term constraints.

The complexity of the academic literature might have 
clouded a rather simple question. Will we efficiently 
reduce the negatives implied by our economic activity or 
face the consequences? Consequently, the two aspects an 
investor wishes to assess is to what extent his portfolio 
contributes to the reduction of social and environmental 
negatives, and how it contributes to the improvement of 
global resiliency. The first dimension can be approached 
with integrated assessment models (IAMs) similar to 
the DICE, with clear and fair expression of trajectories 
required from each sector and region.
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The remaining pitfalls are to set commonly accepted 
abatement cost curves and to obtain full disclosure of the 
research and development investment dedicated to climate 
change and to set issuer-specific deviation from the 
optimal path. Similarly, commonly accepted accounting 
techniques are required to meet this goal. Regarding the 
second dimension and the question of adaptation, there is a 
lack of behavioral modeling and indicators of the resiliency 
dimension where huge uncertainty remains and will not 
be dealt without the consideration of the social dimension.
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Economic Modeling of Climate Risks

1 Introduction

Extreme weather events and natural disasters are now considered the most likely and serious
economic risks1. If the notion of climate risks can first appear intuitive, measuring these risks is
in fact still a quantitative puzzle. Since the great financial crisis, a particular attention has been
dedicated to risk transmission channels to financial stability. Mark Carney (2018) identified three
forms of transmission channels from climate risks. First, the physical risks stemming from the
increased frequency and severity of climate and weather events causing physical capital destruction.
The liability risks that arise from actors seeking compensation from those they hold responsible for
the climate related losses they suffer. Finally, the transition risks that arise from the sudden shift
toward low-carbon economy. In practice, issuers and asset managers generally consider two main
ways climate change can affect their activity2. On the one hand, the climate risks gather actors’
physical risks and the adaptive capacity of their business model. To some extent, these risks are
related to the capacity of a actor to adapt in a changing landscape. Following this definition, a
car manufacturer faces a climate risks if his facilities are located on a sensitive area but also if
he appears unprepared to shift his business given the current and expected changes required in
the transportation sector. In other words, these risks are default risks that can be qualitatively
represented as the answer to the question: can the actor subsist physically and economically if the
average temperature was to rise? On the other hand, carbon risks are more closely related to the
carbon intensity of their activity and often associated with transition or regulatory risks (Rose,
2014). In simple terms, these risks are the answer to the question: what would the actor have to
pay if the optimal tax was implemented and would its business still be profitable?

Regardless of the precise definition of these risks, the estimates generally come from integrated
economic models that we must fully understand in order to make good use of the results. The
purpose of these models is to estimate the evolution of the global economy under a range of as-
sumptions given growing uncertainty. In a forward-looking environment, it can be misleading to
assess future outcomes on historical data and this is the reason why these mathematical frame-
works, called integrate assessment models (IAMs), are developed. They allow climate risks to
be quantified and provide information on the optimal mitigation or adaptation policies to pre-
vent them. Climate change being a global phenomenon, IAMs are generally built on the basis of
macroeconomic modeling.

The macroeconomics of climate change lie on six important dimensions: growth, time horizon,
geographic breakdown, complexity and trade-flow (regions and sectors), damage modeling due to
uncertainty and resiliency or adaptive capacity. The first two dimensions question the interaction
between climate change and standard growth theory in the long-run. The next two respectively
translate the difficulties of having a representative model allowing interactions between agents and
to estimate the spatial distribution of damages. Modeling and quantifying expected damages is
a challenge in itself. For instance, modelers must distinguish direct impacts, second round effects
(Battiston et al., 2017) and extreme events with their respective magnitude and likelihood without
data to back up their projections. Finally, assessing either the resiliency or adaptive capacity of
agents evolving in a changing landscape is by no means trivial. Above all, the data required to

1World Economic Forum Risk Report 2017: http://www3.weforum.org/docs/GRR17_Report_web.pdf.
2Considering that liability risks mainly result from the diffusion of the physical risks through the insurance,

legal or financial system.
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Economic Modeling of Climate Risks

track the macroeconomic dynamics of climate change lie with microeconomic indicators which
ends-up in the conflicting top-down vs. bottom-up methodological debate.

In neoclassical Keynesian economics, the internalization of externalities occurs through gov-
ernment or central banks actions. Therefore, numerous models tracking the optimal carbon tax
have been developed by practitioners. The purpose of these models is to put a price on emissions,
defining thus the social cost of carbon. In addition to the DICE model described in this paper,
we can for example introduce PAGE3 (Hope, 2006; Alberth and Hope, 2007), which is a model
which considers eight regions and four damage components: economic damages, non-economic
damages, sea level rise and discontinuities. This model was used by Nicolas Stern in the Stern
Review (2006), the famous report advocating for immediate action. The FUND4 (Anthoff and
Tol, 2009 and 2012) model is an example of a partial equilibrium model that can be used on case
studies to assess the impact of specific climate events on GDP for instance (Narita et al., 2009).
This model considers sixteen regions and different sources of climate damages: health, sea-level
rise, agriculture etc. Another famous example is the MERGE5 (Manne and Richels, 2005) which
was originally introduced by Manne et al. (1995). It describes global economy-climate interac-
tions between nine specific regions and uses Negishi weights to balance interregional trade-flows
(Stanton, 2009). These models are used by governments to determine the social cost of carbon.
We consider that they can be used in the field of finance to assess assets exposure to carbon risks.

The concept of integrating climate variables was extended to the macroeconomic real business
cycle, where the money supply follows a stochastic process. In these conditions, one can observe
the resulting equilibrium of the variables of interest given a set of assumptions. These models are
therefore called dynamic stochastic general equilibrium (DSGE) models. In simple terms, they
represent time varying processes, embedding to some extent stochastic uncertainties, related to
financial instruments, modeled in order to make some projections and to find plausible equilibria.
In the case of climate change, the variables of interest will therefore be the common economic ones
(prices, production and demand for goods) plus some endogenous variables, such as temperatures
or sea levels, that have been ignored so far despite their economic outcomes. Moreover, the
uncertainty related to climate change and social stability can also justify to some extent stochastic
modeling. This type of tools have a modular structure and can provide complementary information
on transition pathways. Moreover, they can be fitted on input-output matrices to match observed
time-series or allow endogenous technical changes and substitutions. These advanced models are
powerful tools to assist decision-making in the field of asset management as long as managers are
well aware of their limits.

This paper aims to provide an extended review of the literature related to IAMs and more
broadly on climate economy. It is organized as follows. First, we reiterate the theoretical macroe-
conomic fundamental notions that enable IAMs to be developed. Then, we provide a detailed
review of the seminal model of Nordhaus, the dynamic integrate climate economy (DICE) model.
Third, we present a literature survey of the modeling standards of the main variables and phe-
nomena of interest. In this section, we question model outputs with respect to the underlying
uncertainties and their failure to represent the world’s complexity. Despite the imperfection of
these frameworks, they are the only tools available to make out-of-sample estimates. Conse-

3PAGE is the acronym for policy analysis of the greenhouse effect.
4FUND is the acronym for framework for uncertainty, negotiation and distribution.
5MERGE is the acronym for model for evaluating regional and global effects of GHG reduction policies.
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quently, our view is that extending these models to model endogenous growth rates and include
the financial market and particularly investor’s range of different beliefs could be a question to
address. Therefore, further disclosure and data support are required to allow asset managers to
track portfolio-specific abatement costs relative to emissions induced and to implement, for in-
stance, robust constrained portfolio alignment strategies. More generally, to better integrate both
short- and long-term objectives, financial pricing models must encompass multiple modules to
adopt optimal strategies in the changing landscape.

2 The origin of climate economy

Climate integrated economy literally represents the incorporation of climatic constraints into the
traditional economic framework. Commonly, the economic growth engine is based on an exogenous
labor force or population, a productivity factor and the idea according to which capital is split
between investment and consumption. Integrating climate into this framework suggests that the
increasing temperatures will, one way or another, have an impact on growth. To translate this,
one can introduce hypothetical global damages, which requires strong assumptions for a global
model, and are even less clear looking at atomistic agents. Prior to that, we must introduce the
academic concepts for representing economic growth equilibrium. Once the economic foundation
is laid, we provide a review of Nordhaus optimization model for policy making, which was the
first to introduce a climate module in the economic framework.

2.1 Economic growth modeling

The extended literature on climate economy is based on the famous and traditional Solow (1956)
growth model6. Before introducing environmental constraints, we give an overview of this model,
and of the infinite-horizon and overlapping generations modeling standards. The thorough theo-
retical concepts are precisely developed by Romer (2006). The third part aims to introduce the
notion of decentralized equilibrium, allowing the markets’ complexity to be estimated.

2.1.1 The Solow growth model

The Solow model is based on a standard function defining the production of a single good Y (t):

Y (t) = F (K (t) ,A (t)L (t)) (1)

where K (t) is the capital input, A (t) the knowledge factor 7 and L (t) the labor all varying over
time t.

Graphically, Figure 1 shows that increasing the productivity factor A2 > A1 significantly shifts
up the production. The question raised would be how to capture disruption in this knowledge
factor that affects production8. In the Solow model, production functions have constant returns

6Sometimes called the Solow-Swan (1956) model.
7See knowledge factor in the glossary.
8The question of endogenous technical change (ETC) will be addressed in Section 3.2 on page 38.
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Figure 1: Influence of knowledge factor in the Solow model

fA2(k)

fA1(k)
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to scale9, meaning that they meet the condition:

F (cK, cAL) = cF (K,AL) ∀c ⩾ 0 (2)

For a set of inputs I, for instance I = {A,L,K}, the production function F ∶ I → O must also
respect Inada conditions (Inada, 1964), that gives, in the general case:

1. F (0) = 0

2. ∂F (x)/∂xi > 0 ∀xi ∈ I

3. ∂2F (x)/∂2xi < 0 ∀xi ∈ I

4. limxi→+∞ ∂F (x)/∂xi = 0

5. limxi→0 ∂F (x)/∂xi = +∞

Conditions (2) and (3) imply that marginal production with the capital is positive but decreasing
while capital rises. Altogether, these conditions give production functions with logarithmic shapes
(Figure 1). The constant returns condition (2) enables us to write:

F ( K (t)
A (t)L (t)

,1) = 1

A(t)L(t)
F (K(t),A(t)L(t))

We set k (t) = K (t)
A (t)L (t)

to be the capital per unit of effective labor. Then, the output per unit

of labor is given by y (t) = 1

A (t)L (t)
F (K (t) ,A (t)L (t)) and f (k) = F (k,1), so we can rewrite

the production function with the following reduced form:

y (t) = f (k (t))
9See return to scale in the glossary.

10



Economic Modeling of Climate Risks

The exogenous growth of labor and knowledge are generally represented by exponential functions
with given growth rates:

A (t) = A0e
gAt

L (t) = L0e
gLt

where gA and gL are respectively the growth rates for productivity and labor initiated at A0 and
L0. In this model, the output can be saved for future generations, therefore it is split between
consumption and investment. This important relationship is called law of motion for capital, we
have:

dK (t)
dt

= sY (t) − δKK (t)

where s is the saving rate and δK the depreciation of capital. This model is highly simplified and
does not take into account governments, or fluctuation in employment, while the rates s, δK , gL,
gA are constant and independent. Moreover, there is a single product. The key equation of the
Solow model is given by deriving k (t):

d(K (t) /A (t)L (t))
dt

= dk (t)
dt

= sf(k (t)) − (gL + gA + δK)k (t)

A specific example, used in Nordhaus model, is the Cobb-Douglas production function. This
function has constant elasticity of substitution and meet all Inada conditions.

• In the case of Harrod-neutral, we have: Y (t) =K (t)α (A (t)L (t))1−α
;

• In the case of Hicks-neutral, we have: Y (t) = ATFP (t)K(t)αL (t)1−α
.

Here, ATFP (t) is the total factor of productivity (TFP) and α is the share of capital in revenue
defining the input output elasticity. For instance, if α = 0.2, an increase of 1% in capital usage
would lead to approximately a 0.2% increase in output. Cobb Douglas presents the advantage
to be the same regardless of the introduction of the technological progress with the identity:
ATFP (t) = A1−α (t). We recall the expression at the equilibrium:

sf(k⋆ (t)) = (gL + gA + δK)k⋆ (t)

Using the Harrod-neutral specification, leading to the simplified expression f (k) = kα, gives the
famous equilibrium:

k⋆ = ( s

gL + gA + δK
)

1
1−α

Figure 2 shows that increasing the saving rate, sH > sL, increase investment, below the intersec-
tion, and reduces consumption, between intersection and production output f (k), which lead to
another equilibrium. Phelps (1961) golden rule saving rates, or golden rule of accumulation, is the
expression of the saving rate that satisfies the equilibrium, and more specifically that maximizes
consumption over time and between generations. It expresses in simple terms, the fair rate of
savings to preserve future generations:
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Figure 2: Golden rule of savings in the Solow model
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“Each generation in a boundless golden age10 of natural growth will prefer the same
investment ratio, which is to say the same natural growth path” (Phelps, 1961, page
640).

The Solow version states that the capital/output ratio depends only on the saving rates, growth
and depreciation rate:

K (t)
Y (t)

= s

gL + gA + δK
Mankiw-Romer-Weil (1992) version of model proposed to take into account ‘human capital ’

accumulation. This new version of the Solow model presents the output as follow:

Y (t) = H (t)βK (t)α (A (t)L (t))1−α−β

where H (t) is the human capital and β is the elasticity human capital–effective labor. Assuming
the same depreciation rate δH = δK for human and physical capital, and admitting that the savings
can be split up between human and physical capital such as s = sH+sK , there is convergence toward
the following equilibrium:

k⋆ = (
s1−β
K sβH

gL + gA + δK
)

1
1−α−β

and h⋆ = (
sαKs

1−α
H

gL + gA + δK
)

1
1−α−β

Presented this way, it is both natural and intuitive to extend this concept to the ‘natural capital ’
which could be represented by the carbon budget11 in models estimating global warming. Note
however, that regardless of the quantity accumulated, this model leads to static equilibrium and
the time dimension is absent. More importantly, long run growth derives mostly from TFP
growth12, an exogenous variable about which the model is entirely silent. Accounting growth

10 “By a golden age I shall mean a dynamic equilibrium in which output and capital grow exponentially at the
same rate so that the capital-output ratio is stationary over time” (Phelps, 1961, page 639).

11See carbon budget in the glossary.
12See Figure 1 on page 10.
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methods exist but are subject to numerous pitfalls due to their dynamic aspect and the perfect
competition assumption under which Cobb Douglas production function holds.

The question becomes how to better represent the natural capital in a neoclassic13 model.
Indeed, resources or the planet’s global state are not included in this basic approach. Malthus
(1798) theory already questioned the adequacy between the exponential growth of the population
and food supply. His theory can be extended to other limited resources or, more generally, to any
irreplaceable input consumed faster than produced14. To find the most appropriate answer from
policy makers or investors, we must analyze how to best model climate impact on the economy.
Is it using the traditional Solow model where the output is penalized by a climate loss coefficient
Ωclimate? If yes, how do we mathematically assess damages, potentially endogenous to the output,
and compute their effects on the production? Or should we consider a decreasing stock of the
natural capital available in a traditional accumulation approach? For instance, the latter option
would lead to the following equation:

Y (t) =K (t)α (A (t)L (t))1−α−ϑ
Nc (t)ϑ (3)

where α > 0 is the elasticity capital–effective labor, and ϑ > 0 the elasticity of natural resources–
effective labor and admitting that α + ϑ < 1. The natural capital15 Nc, which is decreasing, which

gives mathematically
dNc (t)

dt
= −δNcNc (t), δNc being a positive constant16. Differentiating now

Equation (3) and after taking the logarithms of each sides, we can obtain the growth rate for the
output on the balanced growth path17 g⋆Y (Romer, 2006):

g⋆Y = (1 − α − ϑ)(gL + gA) − δNcϑ
1 − α

= gL + gA −
(gL + gA + δNc)

1 − α
ϑ

This illustrative example gives an idea of the penalization growth factor implied by the introducing
of a decreasing environmental capital. However, consumption of exhaustible assets and resources
through static-equilibrium type of economic theory can be misguided:

“The static-equilibrium type of economic theory which is now so well developed is plainly
inadequate for an industry in which the indefinite maintenance of a steady rate of pro-
duction is a physical impossibility, and which is therefore bound to decline” (Hotteling,
1931, page 138-139)18.

13See neoclassic economics in the glossary.
14In this case, carbon comes as a negative capital, which is emitted faster than absorbed.
15We could have defined a function for land use and another for resources similarly to Romer (2006).
16Some contemporary theories, like the Green Paradox (Sinn, 2012), would imply that δNc is in fact an increas-

ing function of the time, as instead of speculating on resources that will become more expensive because their
rarefaction, owners tend to get rid of them before they become stranded.

17This result is based on the hypothesis that gK = gY . We also use a labor augmenting factor A (t) which is not
the case in most models using the ATFP Hicks-neutral version.

18However, following Hotteling’s principles we should observe in theory that, the rate at which the price of
non-renewable resources increases tracks the real interest rate. In practice, it does not.
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Not to question the entire neoclassic approach, describing the dynamics of an infinitely growing
system in a finite universe, we can to some extent admit that looking for static growth equilibrium
is not adapted to investigate climate potential damages or to determine exhaustible resources
prices. Therefore, in his original seminal paper, William Nordhaus chose to introduce a damage
coefficient, a function of the temperature, reducing the net output.

2.1.2 Infinite-horizon and overlapping-generations

In long-term issues, the problem is how to model global preferences through time. This issue was
introduced by Mark Carney19 (2018) as the ‘tragedy of horizon’ of climate change. The static
golden rule has shown its limits when it comes to represent global growth with limited resources.
Therefore, we must use a modeling tool that enables us to integrate time preference. Utility
functions are used in economics to model preferences and rank alternatives according to their
utility to the agent they represent. Most consider a welfare function as the aggregated social
utility, a function of consumption per capita. In these models every household have therefore
the same utility; we talk about ‘identical infinitely lived households’. This type of representation
is often used to obtain the best policy in the centralized case, where the social planner looks
for an optimal trajectory. Note however, that these models are subject to criticism as in the
‘real world’ agents are subject to highly inegalitarian revenues, implying thus different pattern of
consumption20 between households, and with high and obvious preference for the present coming
as a standard in most economic and financial models (time value of money).

The economy is generally modeled using a large number of identical households. Each of them
is said to provide one unit of labor L (t) which follows the growth rate gL. The inter-temporal
utility function in the traditional Ramsey (1928) model is:

U = ∫
∞

t
e−ρtL (t)u(C (t)

L (t)
)dt

where ρ is the discount rate that represents time preference, C (t) is the consumption and the u

is the utility function. Let c (t) = C (t)
L (t)

be the consumption per capita. The utility function used

is generally the constant relative risk aversion (CRRA):

u (c (t)) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

1 − θ
c (t)1−θ

if θ > 0, θ ≠ 1

ln c (t) if θ = 1

19“Climate change is a tragedy of the horizon which imposes a cost on future generations that the current one
has no direct incentive to fix” (Mark Carney, Governor of the Bank of England, speech 6 April 2018, International
Climate Risk Conference for Supervisors, De Nederlandsche Bank, Amsterdam).

20One could indeed wonder how to model a system based on, if not digging, inequalities, with a single agent
scalable to the entire population. If the imperfections of economic models are admitted and are, to some extent,
what makes them models, the concrete means to act against climate change might be revealed by entering these
inequalities in this model. The simple underlying idea is that it would make sense to expect more from the ones
that can do more. This type of distinction has been partly done at a regional level by a later regional version of
the DICE (see Section 2.2.3 on page 32).
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where the parameter θ measures the degree of relative risk aversion. In this case, θ also represents
the willingness to shift consumption between periods. Another extension to this model was to
propose an overlapping-generations model (Diamond, 1965). The utility function is divided in two
generations respectively consuming c1 (t) and c2 (t). The utility for the representative household
at t becomes:

u (c1 (t) , c2 (t)) =
c1 (t)1−θ

1 − θ
+ ( 1

1 + ρ
) c2 (t + 1)1−θ

1 − θ
where θ > 0 is the risk aversion, ρ > −1 and where the consumptions of the two generations
are subject to economic dynamics. This type of operation, splitting the overall consumption, is
usually aimed at testing specific products, measures or policies. It was introduced by Diamond
(1965) to assess national debt and government action but can be extended to other simulations.
For instance, if we wish to estimate the consequences of a Neo-Malthusian scenario, including
birth control, we must take this type of function into account. Indeed, the current pension system
might fail to match the consumption of the older generation under a certain growth rate. Many
other applications could be found for instance for modeling employment or optimal duration of
schooling.

Ramsey’s model applies to deterministic cases. The introduction of random risk requires
tools capable of taking into account uncertainties. In the event of future hazard, the function of
Epstein-Zin (1991) is commonly used to assess inter-temporal utility. Indeed, this function was
introduced to allow a discrete differentiation to inter-generational preferences. The Epstein-Zin
utility distinguishes risk aversion and elasticity of inter-temporal substitution (EIS), while CRRA
considers that agent’s willingness to substitute consumption across states of nature is the same as
their willingness to substitute consumption over time. This utility function therefore makes the
distinction between the two parameters and follows:

uEZ(c (t)) = ((1 − βT )c (t)ρ + βT (Et [uEZ (c (t + 1))1−θ])
ρ

1−θ )
1
ρ

where
1

βT
− 1 is the marginal rate of time preference,

1

1 − ρ
is the elasticity of inter-temporal

substitution and θ is the risk aversion parameter21. This function is recursively defined and we
note that maximizing the utility at t requires an idea of the distribution of consumption at t + 1.
This notion of future utility is the certainty equivalent of future lifetime utility, translated by the
expected value given the information available at time t (Daniel et al., 2018). If the uncertainty at
t∞ is high, this type of function channels the aversion toward temporal uncertainty and potentially
suggests prompt actions to preserve future utility. Consequently, Daniel et al. (2017), using this
framework to assess the social cost of carbon, found a higher price with EZ-climate22 than with
traditional CRRA, especially when climate uncertainty rises:

21Ha-Duong and Treich (2004) indeed showed that climate economy integrated models based on inter-temporal
expected utility maximization setting θ = ρ, in other terms, setting the same elasticity of substitution between
states and times, “may misinterpret the sensitivity of the climate policy to risk-aversion” (Ha-Duong and Treich,
2004, page 1). In their paper they compared the sensitivity of the two parameters of interest, namely risk aversion
and the resistance to substitution.

22Note that we can find similar works comparing preference for the present utility to power utility with risk
aversion (CRRA) for instance Bansal et al. (2016).
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“The optimal carbon price may, in fact, be high today, declining over time [...] The
less certain we are about the climate risks facing us in future states of the world, the
higher the optimal price on carbon today” (Daniel et al., 2018, page 43).

There are multiple ways to model inter-temporal utilities and specifications for these functions
depending on the problem to solve. The behavioral issues implied by temporal uncertainty are,
however, poorly represented and this theoretical framework ignores the complexity of the ‘tragedy
of the commons ’23 system archetype of climate change for example. Another concrete example
to picture this vicious cycle could be be through the answer provided by the fossil fuel supply
side, boosting their sales before becoming stranded. Projecting future taxes and a significant
decrease in demand for their products, the primary incentive of owners of fossil resources is to
lower prices, and doing so, increase global emissions. This phenomenon, worsening the global
situation and referred to as the green paradox (Sinn, 2012), is most likely anecdotal but reflects the
mismatch between the optimal inter-temporal behavior and the one observed on agents interacting
on the market place. To go further in the modeling of contextual behavior, immediate responses,
cascading effects and their implication on prices, we must consider more complex representations.
The decentralized computable general equilibrium (CGE) models are good candidates to approach
these rather short- and medium-term responses.

2.1.3 Decentralized general equilibrium

So far, we have considered utility functions relative to centralized or dictatorial allocation pro-
cesses, where every choice at each step is made by a dictator-like decision maker, a so-called social
planner. Introducing a decentralized allocation process allows us to extend the modeling land-
scape to the real business cycle of firms in competitive markets. In other words, these dynamic
models aim to best reproduce the reality to find the most expected equilibrium in a situation
where there is no almighty social planner and where each agent will maximize its own utility using
the information in its possession, or in other words, given its rational expectations24.

In this extension of the Solow model, the Firm i receives capital from households in exchange
for rental rate. In other words, it is owned by them. Each firm can be seen as a production
unit of a single or multi-dimensional output, the reduced production function is noted f . Their
production constrained by both domestic and foreign market demand, which fixes prices p (t).
The Firm seeks to maximize profits given ki (t) and Li (t) that are respectively the amounts of
capital and labor that Firm i employs at time t. The first order conditions for an interior solution
allow us to determine the optimal interest rate and wage. The interest rate therefore follows:

ri (t) =
dfi (ki (t))

dt

and the wage per unit of effective labor follows:

wi (t) = fi (ki (t)) − ki (t)
dfi (ki (t))

dt

23See tragedy of the commons in the glossary.
24See rational expectations in the glossary.
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Each representative Firm i ∈S in the market maximizes its utility of profits given by:

Πi = fi(ki) − ri (t)ki (t) −wi (t)Li (t)
= yi − ri (t)ki (t) −wi (t)Li (t)

where yi (t) is the production of Firm i, wi (t) is its wage, ri (t) is the interest rate, Li (t) and ki (t)
the labor and capital involved in the production. This relationship, added to the maximization of
household utility and market clearing condition25, are sufficient to set the mathematical framework
in which real business cycles can be tested. Under these conditions the firm’s maximum profit is
exactly zero and the prices defined by market demand do not intervene. In this case, this set of
equations defines the zero profits condition. Further specifications embedding prices for products
yi (t) can allow us to estimate profit distributions for firms. If the choice is made to embed a
stochastic definition for prices, this framework becomes a dynamic stochastic general equilibrium
(DSGE) model that allows us to simulate the convergence of the market with uncertainty. Par-
ticularly, this dynamic framework could allow us to shock and stress-test, to assess the economic
system response to an identified event, if causalities, feedbacks and transition pathways have been
properly defined.

In computable general equilibrium (CGE) models, Walrasian equilibrium are introduced to
model the dynamic of the economy E. This equilibrium is represented by a vector of prices that
meets a range of constraints. The second important concept is the notion of Pareto optimality,
that defines the allocations at the optimal where no consumer could be made better off without
another being made worse off. Note that this statement does not imply egalitarian allocation,
but simply the absence of win-win trade-offs in the economic framework (Levin, 2006). Formally,
given the productive economy E:

E = {(uj, ej,Ψi,j) , (yi,wi, ri) , i ∈S, j ∈ H}

where each Household j, can be defined by its utility uj, endowment ej and portfolio26 Ψi,j

representing its positions in firms. On the other side, firms are defined by their production yi,
salaries wi and dividends ri. Under the Pareto optimality condition, the Walrasian equilibrium for
production is the vector {(pi, xj, yi) , i ∈S, j ∈ H} where pi is the vector of prices, xj is the vector
translating the allocation of the demand in the population, and yi reflects the production. The
equilibrium exists and, if we focus on production, it satisfies (Levin, 2006):

(i) Firms maximize their profits, ∀i ∈S:

y⋆i = arg max pi ⋅ yi −
dyi
dt

⋅ ki − (yi − ki
dyi
dt

) ⋅Li

where Li is the number of employees.

(ii) Households consume to maximize their utility, ∀j ∈ H:

x⋆j = arg maxuj (xj)
s.t. p(xj − ej) − p∑

i∈S
Ψi,jyi ≤ 0

25Implies that the demand equals the supply on both the capital and labor markets.
26The term portfolio is abusive here, in fact, this parameter refers to the share of the Firm i owned by the

Household j. The financial market does not formally intervene in the price dynamics for this definition of the
Walrasian equilibrium.
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(iii) Markets clear27 (supply matches demand for products):

∑
j∈H

(xj − ej) =∑
i∈S
yi

This definition is one of the possible formalizations of the Walrasian equilibrium for the production
economy. There are, however, other ways to write the problem. For instance Levin (2006) defines
financial market equilibrium as a collection of portfolios Ψ⋆

i,j, individual consumptions xj, and
prices p⋆ such as agents, here investors, maximize their utility and markets clear. The integration
of the environmental dimension in a general equilibrium modeling financial market would require
us to compose with these two definitions. If the complexity can be increased to meet this goal,
the convergence of this type of model is not straightforward and higher complexity does not
always imply better representation of the reality. Therefore, most IAMs use a traditional welfare
optimization giving the optimal path for the tax over time. This type of model would be effective if
governments and regulators were both willing and able to take action against climate change, which
appears not to be the case. Some have indeed advocated that the traditional Keynesian28 approach
might not be appropriate to describe climate economy, which is likely to be closely related to
private investment and innovation processes. Kaleki’s (1939) vision of the economy, opposed to the
traditional view of growth with full employment, gives higher importance to investment because
it generates capital stock, profits and aggregate demand. The economic module of IMACLIM-R
(Cassen et al., 2010)29 for instance, is justified as follows:

“We thus adopted Kaleckian dynamics in which investment decisions are driven by
profit maximization under imperfect expectations in non-fully competitive markets (Kaldor,
1957; Kalecki, 1939). Disequilibria are endogenously generated by the inertia in adapt-
ing to new economic conditions due to non-flexible characteristics of equipment vintages
available at each period. The inertia inhibits an automatic and costless come-back to
a steady-state equilibrium”(Cassen et al. 2010, page 7).

The CGE models are, however, limited when it comes to embedding endogenous technical change30.
In the case of endogenous learning, the linear programing methods used lead generally to non-linear
and non-convex optimization problems (Köhler et al., 2006), which make them poor estimators of
long-term projections.

All in all, we see that the modeling of production in an infinitely growing economy with
a limited natural capital is a conflicting concept. Moreover, the inter-temporal preference is
hardly representative of what is likely to occur because of the absence of long-lasting authority.
Decentralized general equilibrium models, if they provide better answers in terms of dynamics, are
highly sensitive models with potentially high complexity which can end up shifting the problem
into black boxing the question into a model with an assumed scientific legitimacy. On the other
hand, the seminal model of Nordhaus, the main purpose of which was to give an idea of the
optimal tax, was rather simple and comprehensive.

27Note that the market clearing condition requires conditions not only on supply and demand for product but
also for capital and labor.

28See Keynesian economics in the glossary.
29This model, developed by the CIRED, makes the interface between static macroeconomic annual equilibrium

and bottom-up sub-models representing the evolution of the natural and engineering science modules that affect
the economy with regard to sectoral specificity.

30See Section 3.2 on page 38.
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2.2 The seminal model of Nordhaus

The dynamic integrate climate economy (DICE) model is a dynamic optimization model for esti-
mating the optimal path of reductions of greenhouse gas emissions. DICE was the first integrated
assessment model with a climate component. It was developed by Nordhaus (1992) and has gone
through several extensions and revisions since (Nordhaus and Yang, 1996; Nordhaus and Boyer,
2010; Nordhaus and Sztorc, 2013; Nordhaus, 2017; 2018). It is a highly simplified deterministic
model based on a neoclassical view of the economic growth theory. The original model does not
distinguish regions or sectors and is based on about 25 equations. Similarly to many IAMs, it
was developed in GAMS31 which stands for general algebraic modeling system. This system was
developed by the World Bank in the early 1970s to easily express and solve optimization problems
sometimes based on numerous equations.

“The aim of this system is to provide one representation of a model which is easily
understood by both humans and machines” (Bisschop and Meeraus, 1982, page 1-2).

This seminal model describes the behavior of the variables with little specification and feedback,
but it gives a reliable overview of the problem. The early concept is that the social planner can
choose to invest today to preserve consumption in the future. This type of modeling applies
to education or technology and was thereby extended to natural capital (Nordhaus and Sztorc,
2013). The main objective of this model is to compute the optimal social cost of carbon SCC (t)
and reduction ratio µ (t). Therefore, the reduction target maximizing the welfare overtime is an
output of this model. In the field of asset management, these targets are used to build aligned
portfolios according to varying methodologies that are given in Appendix A.3 on page 70. In this
section, we give an overview of how this reduction targets are computed. Moreover, we reiterate
that governments use these models to have an idea of the optimal policy, therefore the social cost
of carbon obtained is a good proxy of the carbon risks stemming from potential regulations.

2.2.1 Model specification

The neoclassical fundamental model Following the Solow model, the production output
Y (t) is given by the Cobb-Douglas function:

Y (t) = ATFP (t)K (t)αL (t)1−α

where ATFP (t) is the technological progress or total factor of productivity (TFP), K (t) is the
capital and L (t) is the labor force proportional to the population. Previously, we did not make
the distinction between the production Y (t) and the net output Q (t) because we had the identity
Y (t) = Q (t). Nordhaus considers that there is, however, a discrepancy between Y (t) and Q (t)
because climate damages generate losses at the global level, implying that:

Q (t) < Y (t)

31The GAMS and Excel versions are available online. GAMS model DICE–2013R (baseline and optimal): http:
//www.econ.yale.edu/~nordhaus/homepage/homepage/DICE2013R_100413_vanilla.gms.
Excel model DICE–2013: https://github.com/psztorc/DICE/raw/master/models/excel/DICE2013R.xlsm.
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More precisely, the net output Q (t) is defined as follows:

Q (t) = Ωclimate (t) ⋅ Y (t)

where Ωclimate (t) < 1 is the percentage of the output that is lost because of climate change.
Nordhaus and Sztorc (2013) assumes that:

Ωclimate (t) =
1 −Λ (t)
1 +D (t)

= ΩD ⋅ΩΛ

where D (t) > 0 is the climate damage function and Λ (t) are the abatement costs32. The latter,
also called mitigation costs, are the cost of reducing GHG emissions. For example, we can assume
that D (t) measures the losses implied by natural disasters or production disruption, whereas
Λ (t) represents for instance the investment costs required to shift from fossil fuel to clean energy
sources.

Concerning the economic dynamics, Nordhaus uses the traditional macroeconomic modeling:

Q (t) = C (t) + I (t)

where C (t) is the consumption and I (t) = s (t)Q (t) is the investment33. The expression of the
consumption becomes:

C (t) = (1 − s (t))Q (t)
= (1 − s (t))Ωclimate (t)ATFP (t)K (t)αL (t)1−α

(4)

The dynamics of the knowledge factor ATFP(t), the capital K (t) and the labor force L (t) are
defined as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ATFP(t) = (1 + gA (t))ATFP (t − 1)
K (t) = (1 − δK)K (t − 1) + I (t)
L (t) = (1 + gL (t))L (t − 1)

(5)

where gA (t) is the growth rate of the technological change, δ is the rate of depreciation of capital
stock and gL (t) is the time-varying growth of the population. It is assumed that:

gA (t) = 1

1 + δgA
gA (t − 1)

and:

gL (t) = 1

1 + δgL
gL (t − 1)

where δgA and δgL are respectively the decline rate of TFP and labor growth. The growth of both
population and technical progress are set to evolve exogenously according to the input parameters
gL (t) and gA (t) and the initial observations for the current stocks and growth rates. Other
modeling specifications representative of the asymptotic evolution of these variables are possible

32See the glossary for details about abatement costs.
33See Section 2.1.1 on page 11. Note that here, we introduce s (t) as a variable of time.
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as long as they fit demographic estimations34. For instance, Figure 3 compares the labor function
used in the DICE–2016R35 model, with the population estimation given by ur world in data36

(OWID).

Figure 3: Input trajectory of the population
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Endogenous costs of climate change We have seen that the output loss ratio due to climate
costs is given by:

Ωclimate (t) =
1 −Λ (t)
1 +D (t)

where the climate damages D (t) and the abatement costs Λ (t) affecting the production of goods
were clearly distinguished but gathered in the expression of the loss coefficient. Climate damages
D (t) are represented by Nordhaus with a quadratic function of the atmospheric temperature TAT

such as:

D (t) = a1TAT (t) + a2TAT (t)2

where TAT (t) is the atmospheric temperature a1 and a2 are scale parameters, and a1 is often null.
The climate damage coefficient37 ΩD (t) = (1 +D (t))−1

represents the fraction of output, most
commonly GDP in global macroeconomic models, lost because of the increase in temperatures38.

34In the last version of DICE (Nordhaus, 2018), the dynamics of L (t) is replaced by the following:

L (t) = L (t − 1) ⋅ ( L∞
L (t − 1))

δ′gL

35See Table 3 on page 31.
36https://ourworldindata.org/world-population-growth.
37Note that D (t) is often given as a function of the temperature, D (TAT) in the literature which is unambiguous

because of the endogenous evolution of the temperatures with time in these models.
38Most consider only damages in the expression of Ωclimate, in other words Ωclimate = ΩD, and introduce the

mitigation cost elsewhere. Section 3.1 focuses on damage coefficients ΩD.
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Finally, the cost of reduction of greenhouse gas emissions, abatement or mitigation costs, are
modeled as follows:

Λ (t) = b1µ (t)b2

where µ (t) is the control rate and b1 and b2 scales and nonlinearity parameters. This function
is highly simplifying and aggregated and does not, for instance, consider sector specificity (Vogt-
Schilb et al., 2013) or potential inertia39 (Ha-Duong et al., 1997). Combining the cost and damage
relationships, we obtain the value of Ωclimate (t) in the production function:

Ωclimate (t) = ΩD ⋅ΩΛ

= 1

1 +D (t)
⋅ (1 −Λ (t))

= 1 − b1µ (t)b2

1 + θ1TAT (t) + θ2TAT (t)2 (6)

Geophysical climate module This module makes the link between the production of repre-
sentative goods, the implied increase of GHG concentration in the atmosphere and climate change.
We reiterate that in this model, the only variables affecting the output (6) are temperatures and
more specifically the atmospheric temperature TAT (t), µ (t) being an endogenous control rate or
feedback parameter fixed by an optimization process.

The total emission of GHG E (t) implied by the production Y (t) at time t follows:

E (t) = (1 − µ (t))σ (t)Y (t) + ELand (t) (7)

where mitigation policies are translated by the control rate µ (t), ELand (t) represents exogenous
land-use emissions, and σ (t) is the uncontrolled ratio of GHG emissions to output. In the first
version it was assumed to decline exogenously by 1.25% each year and revised in 2016 to −1.5% to
fit observations. The variation of this parameter can be integrated into the model with a similar
logistic function to labor and productivity:

σ (t) = (1 + gσ (t))σ (t − 1)

where:

gσ (t) = 1

1 + δσ
gσ (t − 1)

The DICE embeds a reduced form of a global circulation accumulation model describing the
evolution of GHG concentration in the atmosphere. The DICE uses a three-reservoir model
comprising the atmosphere AT, the upper oceans UP and deep ocean LO that can be considered
as an infinite sink for carbon. The set of geothermic layers on which this model is based is
consequently LC = {AT,UP,LO}. The concentrations between layers follow:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

CAT (t) = ξ1,1 CAT (t − 1) + ξ2,1 CUP (t − 1) + E (t)
CUP (t) = ξ1,2 CAT (t − 1) + ξ2,2 CUP (t − 1) + ξ3,2 CLO (t − 1)
CLO (t) = ξ2,3 CUP (t − 1) + ξ3,3 CLO (t − 1)

39See abatement costs in the glossary for the extended specification.

22



Economic Modeling of Climate Risks

where ξi,j represents the flow parameters between reservoirs over the step ∆ considered. Let
C = (CAT,CUP,CLO) ∈ R3, the problem becomes:

C (t) = ΦC,∆C (t − 1) +BC,∆E (t) (8)

where the matrices ΦC,∆ and BC,∆ are defied as:

ΦC,∆ =
⎡⎢⎢⎢⎢⎢⎣

ξ1,1 ξ1,2 0
ξ2,1 ξ2,2 ξ3,2

0 ξ3,2 ξ3,3

⎤⎥⎥⎥⎥⎥⎦
and BC,∆ =

⎡⎢⎢⎢⎢⎢⎣

1
0
0

⎤⎥⎥⎥⎥⎥⎦
The layers are mostly conservative as shown by the diffusion parameters in Table 1. For instance,
more than 79.7% of the CO2 stays in the same layer at t + ∆ after ∆ = 5 years. We note that
exchanges between layers were under-evaluated in the prior versions. To compare these parameters
to other IAMs, we added in the last column of Table 1 the transition matrix used in the WITCH40

model (Emmerling et al., 2016). We observe that even these physical variables are subject to
uncertainty.

Table 1: Concentration diffusion parameters (∆ = 5 years step)

DICE–2013 DICE–2016 WITCH–2016
ξ1,1 91.20% 88.00% 88.00%
ξ1,2 3.83% 19.60% 12.00%
ξ2,1 8.80% 12.00% 4.70%
ξ2,2 95.92% 79.70% 94.80%
ξ2,3 0.03% 0.15% 0.50%
ξ3,2 0.25% 0.70% 0.08%
ξ3,3 99.96% 99.85% 99.92%

Source: Kellett et al. (2018), Emmerling et al. (2016).

The next step consists in linking accumulated GHG and climate change. General circulation
models (GCM) for meteorological forecasting are too complex to be incorporated into economic
models. Therefore, Nordhaus focused on average atmospheric temperatures. The relationship be-
tween the GHG accumulation and the increase in radiative forcing41 FRAD (t) arises from empirical
measurements (see for instance Ramanswamy et al., 1991) and climate models42:

FRAD (t) = η ln2 (
CAT(t)
CAT(1750)

) +FEX (t)

= η ln2 (CAT(t)) − η ln2 (CAT(1750)) +FEX (t) (9)

40Where the carbon-cycle is also a three-layer model calibrated to MAGICC (Meinshausen et al., 2011).
41See glossary for radiative forcing.
42We reiterate that we have the relationship:

ln2 (x) =
ln (x)
ln (2)
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where η is the radiative force equilibrium obtained for carbon doubling43 and FEX (t) the exogenous
forcing introduced latter (Nordhaus, 2018). The DICE model used Schneider and Thompson’s
(1981) approach in the most basic way44. The introduction of diffusion parameters between layers
for both concentrations and temperatures mostly tends to delay reduction actions. In other words,
adding complexity to the climate module negatively affects climate action in general. Moreover,
one of the parameters embeds carbon absorption by ocean which shifts the problem as it has
consequences of marine biota and decrease their pH (Caldeira and Wickett, 2003) and might
entail other catastrophic consequences. This model does not reflect the complexity of climate
change which would require a regional approach:

“The thermal inertia of the upper layers of the oceans, combined with vertical mixing
of deeper oceanic waters, could delay the response of the globally averaged surface
temperature to an increasing atmospheric CO2 concentration by a decade or so rela-
tive to equilibrium calculations [...]. It is found that because of the latitudinal depen-
dence of both thermal inertia and radiative and dynamic energy exchange mechanisms,
the approach toward equilibrium of the surface temperature of various regions of the
earth will be significantly different from the global average approach” (Schneider and
Thompson, 1981, page 3135).

However, a more local approach would require using advanced GCM for meteorological projections
coming with the downscaling issues to estimate climate risks that are specific to each location. In
this model, the climate system for temperatures is characterized by a multilayer system comprising
the atmosphere and the mixed layer. The simplified temperature module is therefore represented

43See in the glossary for more details about equilibrium climate sensitivity (ECS).
44Indeed, the radiative forcing defined in the IPCC third assessment report is given for each GHG. On the one

hand, the increase of radiative forcing due to CO2 follows:

FCO2

RAD (t) = 5.35 ⋅ (ln (CCO2

AT (t) (t)) − ln (592.14))

while for other GHG, with interdependent and complex formulation, are approximated differently. For example in
WITCH – 2016 (Emmerling et al. 2016), we have:

Foghg
RAD (t) = inter ⋅ fac(

√
stm ⋅ CoghgAT (t) −

√
stm ⋅ CoghgAT (1750))

where inter, fac, stm are parameters relative to physical properties of the gases for oghg ∈ {CH4,N2O}. We
reiterate that the purpose of this seminal model is not to give a perfectly representative picture of the future, but
to have an idea of the optimal reduction.
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by a two-layer system45:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

TAT (t) = TAT (t − 1) + ( 1

CAT

) ⋅ (FRAD (t) − λTAT (t − 1) − γ (TAT (t − 1) − TLO (t − 1)))

TLO (t) = TLO (t − 1) + ( 1

CLO

) ⋅ γ (TAT (t − 1) − TLO (t − 1))

where TAT (t) and TLO (t) are respectively the temperatures of the atmospheric and near surface
layers at time t, FRAD is the radiative forcing relative to the GHG concentration, CAT and CLO

are the thermal capacity of the two layers, γ is the heat exchange coefficient and λ is the climate
feedback parameter. This equation can be rewritten with T = (TAT, TLO) ∈ R2 as follows (Kellett
et al., 2018):

T (t) = ΦT ,∆T (t − 1) +BT ,∆FRAD (t) (10)

where:

ΦT ,∆ = [φ1,1 φ1,2

φ2,1 φ2,2
] , BT ,∆ = [ξ1

0
]

and:

φ1,1 = 1 − ∆

CAT

(λ + γ) , φ1,2 =
γ∆

CAT

, φ2,1 =
γ∆

CLO

, φ2,2 = 1 − γ∆

CLO

, ξ1 =
∆

CAT

The matrix format will be preferred especially when adding complexity to the model. By contrast
with the concentrations parameters, Table 2 shows that the temperature diffusion parameters of
the DICE remained stable between 2013 and 2016.

Table 2: Temperature diffusion parameters (∆ = 5 years step)

DICE–2013 DICE–2016
φ1,1 86.3% 87.2%
φ1,2 8.6% 8.8%
φ2,1 2.5% 2.5%
φ2,2 97.5% 97.5%

Source: Kellett et al. (2018).

2.2.2 DICE usage

The purpose of this model is to compute the social cost of carbon. The mean to do so is to
maximize the welfare over time. The consumption defined page 20 is sensitive to climate risks and

45These equations are obtained taking a ∆ = 1 step Euler discretization of the following continuous-time dynamics
for temperatures:

CAT
dTAT (t)

dt
= FRAD (t) − λTAT (t) − γ(TLO (t) − TAT (t))

CLO
dTLO (t)

dt
= γ(TLO (t) − TAT (t))

where γ = CLO/τ2 is the heat exchange coefficient and 1/τ2 is the transfer rate from upper layer to lower layer.
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to the cost of investing to reduce emissions. Therefore, the main feedback parameter will be the
control rate, with all other variables being endogenous in this specification. The other variable of
interest will be determined along the path to represent the elasticity of consumption with respect
to emissions: the social cost of carbon46. The optimization problem and the notion of social price
of carbon will be discussed in this section.

Optimization problem In contrast to the production and damages function and the geophys-
ical module that are common to all IAMs, this step concerns only optimization IAMs47. In this
model, the constant relative risk aversion utility function of the dictatorial social planner is:

u (c (t) , L (t)) = L (t) ⋅ (c (t))
1−θ − 1

1 − θ

where θ is the measure of social valuation of different levels of consumption or rates of inequality
aversion (Nordhaus, 1992). Indeed, in the absence of uncertainty in this deterministic model, the
household attitude toward risk is only influenced by variation of consumption in time. If θ tends
to 0 there is no risk aversion, and thus no social aversion for inequality. On the other hand, the
social welfare becomes egalitarian through generations48 when θ tends to 1. In other words, when
θ is small, consumption levels between generations are highly differentiated, and households are
willing to accept large variations in consumption over time. The original DICE (1992) model
used the utility function at the limit of θ tends to 1, namely the logarithm or Bernoullian utility
function: u (c (t) , L (t)) = L (t) ln(c(t)). Let W be the inter-temporal social welfare to maximize
as a function of the control rate µ (t) and the saving rate s (t)49:

W (µ (t) , s (t)) =
T

∑
t=1

u (c (t) , L (t))
(1 + ρ)t

(11)

where the arguments {µ (t) , s (t)} represent the optimal control rate and saving rate maximizing
the inter-temporal welfare, the other variables being endogenous of the system of equations. The
idea is that the social planner has no power over the exogenous population growth, productivity
factor or capital, so the only degree of freedom are these two parameters. The optimal pathways
are derived by maximizing the social welfare at each step:

W ⋆ = max
µ(t),s(t)

W (µ (t) , s (t))

46See social cost of carbon in the glossary.
47Decentralized frameworks, with sophisticated damage feedbacks or production substitution specifications, are

usually evaluation tools, with no optimal control dimension. Indeed, this optimization purpose is to find the optimal
trajectory of the control rate maximizing the welfare over time.

48We reiterate in Section 2.1.2 on page 14, that the CRRA risk aversion between state and time is the same.
Daniel et al. (2017) therefore used an Epstein-Zin preference framework to introduce the differences between state
and time in a different way. They showed that the optimal carbon price today is high, 100$/tonCO2, and declines
over time, which contradicts most models advocating for slow increasing policies and not to implement too strong
and overly costly policies.

49Note that the optimal value for the saving rate is often kept constant as shown in Figures 15 to 17 on page 77.
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Then, for a set of constraints, fixing for example the maximum temperature or the growth con-
straint for the mitigation ratio50, we can define the following optimization problem:

{µ⋆ (t) , s⋆ (t)} = arg max
T

∑
t=0

u (c (t) , L (t))
(1 + ρ)t

(12)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ATFP (t) = (1 + gA (t))ATFP (t − 1)
K (t) = (1 − δK)K (t − 1) + I (t)
L (t) = (1 + gL (t))L (t − 1)
E (t) = (1 − µ (t))σ (t)Y (t) + ELand (t)
C (t) = ΦC,∆C (t − 1) +BC,∆E (t)
FRAD (t) = η log2 (CAT (t)) − η log2 (CAT(1750)) +FEX (t)
T (t) = ΦT ,∆(t − 1) +BT ,∆FRAD (t)
C (t) = (1 − s (t))Ωclimate (t)ATFP (t)K (t)αL (t)1−α

where µ⋆ (t) ∈ [0,1] and s⋆ (t) ∈ [0,1] and potentially subject to a set of constraints51.

The social cost of carbon This parameter is computed along this path as the optimal price
that should be placed on emissions to preserve future generations. This can be intuitively defined
as the “first estimate of the Pigou52 tax that should be placed on carbon dioxide emissions. Indeed,
if the SCC is computed along a trajectory in which the marginal costs of emission reduction equal
the SCC, the SCC is the Pigou tax” (Tol, 2008). Therefore, optimizing the control rate µ⋆ (t) is
directly reflected in terms of social cost of carbon. A more general definition was proposed by
Nordhaus:

“This concept represents the economic cost caused by an additional ton of carbon diox-
ide emissions (or more succinctly carbon) or its equivalent. In a more precise defini-
tion, it is the change in the discounted value of the utility of consumption denominated
in terms of current consumption per unit of additional emissions. In the language of
mathematical programming, the SCC is the shadow price of carbon emissions along a
reference path of output, emissions, and climate change” (Nordhaus, 2011, page 2).

The path for the shadow price is determined using the ratio of Lagrange multipliers of the incre-
mental change in welfare with respect to emissions, ∂W ⋆/∂E (t), and the incremental change in
welfare with respect to the incremental change in consumption, ∂W ⋆/∂C (t). The formula of the
SCC is then given by:

SCC (t) = ∂W ⋆/∂ E (t)
∂W ⋆/∂ C (t)

(13)

= ∂ C (t)
∂ E (t)

50This constraint fixes the feasibility of the tested scenario. For instance, if regulations were forcing a 10%
reduction at time t, most models will not allow this variable to jump to 90% at the next iteration.

51The three first equations describe the exogenous dynamics of the total productivity factor, population and
capital (Equation (5) on page 20). The next equation represents the emission of GHG implied by the production of
the final ouput (Equation (7) on page 22). After-that there is the description of the GHG concentration dynamics
described page (Equation (8) on page 23), the expression of the radiative force (Equation (9) on page 23), the
temperatures (Equation (10) on page 25) and finally the consumption (Equation (4) on page 20).

52See Pigouvian tax in the glossary.
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In most optimization models, the carbon price represented by the SCC (t) and the optimal control
ratio µ⋆ (t) paths are incrementally defined as the output of the optimization process maximizing
the welfare53. They are indeed the controlling variables emissions to be reduced along the path,
which are material for policy makers. The limits of optimization models are their weak empiri-
cal applications. Indeed, they are based on strong functional and parametrization assumptions
(Köhler et al, 2006). On the other hand, evaluation models are recursive partial or general equi-
librium models that generate paths for environmental and economic variables without computing
their optimal value but with a more robust econometric basis. This empirical approach implies
rather backward-looking analysis that can appear inconsistent with forward-looking decision mak-
ing for energy generation (Köhler et al, 2006).

Applications and results Figure 4 on page 29 presents the main operating principle of, not
only the DICE but almost every IAMs. The right-hand area presents the type of modeling and
representative variables that intervene at each step of the process. In simple terms, the production
of the global output Y (t) requires the emissions E (t) which affect the concentration C (t) and,
through the increase of the radiative forcing FRAD (t), the temperatures T (t). This increase of
the average temperature reduces the global economic net output Q (t). To preserve consumption
over time, the model finds the optimal value for the control rate, µ (t), decreasing emissions but
coming with the costs Λ (t). The social cost of carbon is computed along the path, as the ratio of
Lagrange multipliers for incremental change in welfare with respect to emission and incremental
change in welfare with respect to consumption.

Running the model obviously requires a certain amount of assumptions54. These projected
scenarios were presented in Nordhaus and Sztorc (2013), compared to other academic models and
extended in 2016 and 201755. The results of this model are given for each variable in Appendix
A.6 on page 77 in Figures 15 to 17. The scenarios of interest presented by Nordhaus and Sztorc
(2013) were the following:

• Baseline56.
This scenario is the extension of the 2010 active policies (DICE–2013R). It gives a represen-
tation of the current evolution of the temperature in the traditional economic framework if
no change occurs.

• Optimal.
This scenario applies the optimal problem (12) with full participation of the nations (regional
model aggregated) starting in 2015. This scenario tracks the optimal trade-off between the

53Note that the optimization problem is sometimes posed differently but the fundamental structure is the same.
Bansal et al. (2016) used a dynamic optimization problem replacing CRRA by and Epstein-Zin recursive utility
for example. However, the state vector defined by the set of parameters evolves similarly.

54The parameters of the DICE 2013 and 2016 are given in Table 3 on page 31.
55Kellett, et al. (2018) developed a matlab discrete version of the DICE model, the MPC–DICE available

here: https://github.com/cmkellett/MPC-DICE. This model’s equations are reproduced in Appendix A.5. This
model incorporate a receding horizon control process which allows us to better adjust trajectories and can bring
an interesting insight if the model were to be extended to the financial system. To replicate infinite horizons
simulation we ran this model calibrated to behave as an open-loop infinite-horizon. The program uses an interior
point optimizer (IPOPT) to maximize the social welfare under climatic constraints.

56See Baseline in the glossary.
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Figure 4: Schematic flowchart of the model
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present value of reducing environmental negatives versus maximizing consumption. The
results for each variable are given in Figure 16 on page 79 and the parameters used are the
ones presented for DICE–2013R version.

• 2 degree.
This scenario is obtained by resolving the same optimal problem (12) but with the additional
constraint maxTAT = 2°C. The temperature cannot increase 2°C therefore more effort shall
be put into reducing emissions. This problem was solved using DICE–2013R parameters
and the output for each variable is given in Figure 15 on page 77.

• Stern.
This scenario with low discounting generating higher carbon prices computed with DICE–
2013R parameters.

• Opt. (16).
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Optimal problem (12) solved with 2016 parameters57. The results are given in Figure 17 on
page 79.

Figure 5: Example of trajectories of the DICE model
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Source: DICE model 2013R (Nordhaus and Sztorc, 2013) – 2016R (Nordhaus, 2018).

These runs all lead to their own optimal price and trajectory as shown in Figure 5 on page
30. The 2°C constraint is no longer allowed by the optimizer under the conditions in place since
2016. Moreover, the optimal scenario obtained in 2016 is closer to the baseline than to the most
ambitious scenario (Nordhaus, 2018) because of the climate system inertia and the high cost of
reducing emissions. The parameter uncertainty58 (Morgan and Henrion 1990; Edenhofer et al.,
2006), characterized by the range of temperatures, and more generally outputs, obtained with
little changes in the assumed values of input parameters, is quite a major issue that must be

57Note that for optimal (16) carbon prices incorporates Hotelling rents.
58Parameter uncertainty denotes that the same model can lead to different outcomes because of uncertain pa-

rameters. There is however inconsistency in the literature in terms of terminology. For Edenhofer et al. (2006)
parameter uncertainty, refers “to a lack of empirical knowledge to calibrate the parameters of a model to their ‘true’
values” and “there is structural uncertainty or model uncertainty, defined as the uncertainty arising from having
more than one plausible model structure” . Nordhaus (2018) however defined structural as including parameter
uncertainty: “Structural uncertainty, or uncertainty within models, arises from imprecision in knowledge of pa-
rameters or variables as well as uncertainty about model structure” (Nordhaus, 2018). In this paper, we used the
definition used by Edenhofer et al. (2006) in the Energy Journal dedicated to models comparison.
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Table 3: Main parameters of the DICE model

Socioeconomic parameters

DICE–2013 DICE–2016

α Capital elasticity in production function 0.3 0.3
ρ Rate of social time preference 0.015 0.015
θ Elasticity of shifting consumption 1.45 1.45
δK Depreciation rate on capital 0.1 0.1

L0 Initial Population (million people) 6838 7403
La Asymptotic population (million people) 10500 11500
lg Growth rate calibrated on 2050 projection 0.134 0.134

AO Initial level of total factor productivity 3.80 5.115
ga Initial growth rate for TFP per 5 years 0.079 0.76
δA Decline rate of TFP per 5 years 0.006 0.005

e0 Initial Industrial emissions 33.61 35.61
q0 Initial world gross output 63.69 105.5
k0 Initial capital value 135 223
µ0 Initial emissions control rate 0.039 0.03
σ0 Initial CO2-eq-emissions output ratio 0.5491 0.3503
gσ CO2-eq-emissions output growth scale (1) 0.01 0.0152
δσ CO2-eq-emissions output growth scale (2) 0.001 0.001

Damage function calibration

a2 Damages scale coefficient 0.00267 0.00236
a3 Exponent on damages 2 2

Mitigation Cost Calibration

pn Price backstop technology∗

(2005US$/tCO2)
344 550

a2 Exponent of control cost function 2.8 2.6
δpb Initial cost decline backstop cost∗ 0.025 0.025

Geophysical variables

η RAD equilibrium for carbon doubling∗∗ 3.8 3.6813

ξ1 ( ∆
CAT

) Heat atmosphere capacity over ∆ 0.098 0.10

ξ2 Equilibrium temperature increase for
CO2 doubling∗∗

12/44 12/44

CAT,1750 Atmospheric concentration in 1750 (GtC) 588 588
f0 Exogenous FRAD

∗ (W/m2) 0.25 0.5
f1 Exogenous FRAD threshold∗ (W/m2) 0.70 1.0
tf Time steps until maximum∗ 18 17
ELO Land and oceans absorption coefficient∗

(GtCO2/year)
3.3 2.6

δEL Land and oceans absorption variation∗

(GtCO2/year)
0.2 0.115

∗ The parameters in this table intervene in Kellett et al. (2018) MPC–DICE specification described in Appendix
A.5 on page 73. Some parameters are not presented in the previous part and are exclusively relative to the
algorithm presented in the appendix, however the overall functioning is the same.
∗∗ See equilibrium climate sensitivity (ECS) in the glossary.

Source: Kellett et al. (2018).
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addressed. To analyze this parameter uncertainty Nordhaus (2018) used the symbolic form:

Y =H(z,α, u)

where Y is the vector of outputs, z a vector of exogenous policies, α a vector of model parameters
and u a vector of uncertain parameters. H is the reduced form of the DICE model dynamics. For
the set of uncertain parameters, a probability density function was derived and the output can
be mapped using a Monte-Carlo sampling of the uncertain variables59. The main results for the
baseline were a certainty equivalent temperature of 4.10°C (mean = 4.12°C and median = 4.06°C).
The social cost of carbon (SCC) in 2015 has a mean 35.6$/tCO2 with a certainty equivalent of
31.2$/tCO2. The 2.5°C limit implies that we reach a SCC CE of 229$/tCO2 in line with Stern’s
review discounting scenario (266$/tCO2).

2.2.3 A regional version

The regional integrated climate economy (RICE) model is first introduced by Nordhaus and Yang
(1996). The weighting process used in this regional version is based on Neigishi theorem (1972)
that targets a general market equilibrium on a global weighted environment. It uses Negishi
weights (Stanton, 2009), to MERGE (Manne et al., 1995) or WITCH (Bosetti et al., 2006; 2014).
The idea behind this weights was expressed by Elizabeth A. Stanton in an interview:

“The importance of making transparent the ethical assumptions used in climate-economics
models cannot be overestimated [...]. Negishi weighting is a key ethical assumption at
work in climate-economics models, but one that is virtually unknown to most model
users. Negishi weights freeze the current distribution of income between world regions;
without this constraint, IAMs that maximize global welfare would recommend an equal-
ization of income across regions as part of their policy advice. With Negishi weights in
place, these models instead recommend a course of action that would be optimal only in
a world in which global income redistribution cannot and will not take place” (Stanton,
2011).

These weights for each region r ∈R at time t are given by the relationship:

ψ(r) (t) =

1

u′ (c(r) (t))

∑r∈R
1

u′(c(r) (t))

(14)

In the case of isoelastic function (constant elasticity substitution function) the relationship be-
comes:

ψ(r) (t) =

1

c(r) (t)−θ

∑r∈R
1

c(r) (t)−θ
= c(r) (t)θ

∑r∈R c(r) (t)
θ

59For computational reasons, it might be preferable to run the model only for some points in the uncertain
parameter distribution, for example Nordhaus (2018) runs the DICE for quintiles on the uncertain parameters.
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The general preference function is then a Bergson-Samuelson social welfare:

W (µ(r) (t) , s(r) (t)) =∑
t
∑
r∈R

ψ(r) (t) u (c(r) (t) , L(r) (t))
(1 + ρ(r))t

where ψ(r) (t) is the Neigishi weight of Region r at time t defined by Equation (14) and ρ(r) is the
region-specific discount rate. RICE-2010 counted 12 regions – US, EU, Japan, Russia, Eurasia,
China, India, Middle East, Sub-Saharan Africa, Latin America, Other high-income countries and
Developing countries (Nordhaus and Sztorc, 2013). This decomposition allows varying objectives
to be set to some extent according to the welfare of each country. Therefore, it is possible to
optimize the aggregated system following, for instance, the Copenhagen Agreement, where richer
countries must reduce their emissions more than developing ones60. The RICE went through
further improvements to fill the gap of the seminal version to embed, for instance, a better rep-
resentation of the energy sector (Nordhaus and Boyer, 2000). Further models also differentiate
sectors within regions as abatement costs can vary between sectors (Vogt-Schilb et al., 2013).

That being said, this change simply affects countries’ consumption in a globally aggregated
and independent way. The international trade-flows and Armington61 elasticities of each product
are not represented. The major accounting issues posed by GHG reduction targets are exacer-
bated by the presence of leakage62, spillovers and inconsistent regulatory regimes. Introducing a
supranational leakage module would be required to better understand the stakes of the climate
impacts. The intermediary consumptions of productive agents are hardly tractable and the levers
to reduce negatives are unclear63. The modifications of trade roads and the local changing life
style due to climate change are ignored in this model. The hypothesis of neutrality of money is
also a major issue in every model developed, and the interaction with real variable have not been
assessed. This criticism goes back to the trade-off between simplicity and better representativeness
of models, which depends on the output we wish to obtain. A possible step further in the field
of optimization models would be to develop an open source sectoral and regional dynamic inte-
grated climate economy model, equalizing the utility of sectors to obtain their respective optimal
abatement, to help issuers and investors to be aware of their respective trajectory with respect to
the environmental stakes.

3 Model and scenario comparisons

Nordhaus’ scheme, which is illustrated in Figure 4 on page 29, is the backbone of the IAMs but
some major updates have been developed by academic practitioners. In other words, if variables
Y (t), K (t) A (t), L (t), Ωclimate (t), W (t), E (t), Λ (t), T (t) and C (t), are broadly the same in
each model, they can significantly differ in their specifications and the definition of their dynamics.

60Reiterating what was noted on page 14, this approach using country-specific utility aims at assisting policy
makers and diplomatic discussions to implement ‘fair’ regulations. One could extend this principle on stakeholders
or issuers but the weighting system has to be defined.

61This parameter represents the elasticity of substitution between products from different countries. This as-
sumption, according to which the substitution of products traded internationally are differentiated, is generally
made in computable general equilibrium models (MIT–ISGM).

62See Leakage in the glossary.
63See NAMEA, Accounting by issues in the glossary.
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Integrated assessment models can be divided in two main classes: policy optimization models
and policy evaluation (or simulation) models (Weyant et al., 1996; Nordhaus and Sztorc, 2013),
and are broadly used to generate information that is material for policy makers to forecast varying
scenarios. The first category of models explicitly provides the optimal feedback affecting the
output which can lead to a representative utility maximization. The inputs of these models are
parameters and assumptions about the structure of the relationships between variables. The
outputs provided by the optimization process are scenarios that depend on a set of constraints.
The models that belong to the second category are based on exogenous scenarios and model partial
equilibrium between variables. Tol and Fankhauser (1998) and Weyant et al. (2006) gather some
of the famous examples of IAMs that were used in the energy modeling forum (EMF, 2006). Others
have also completed these reviews and compared their results for mitigation or adaptation (Füssel,
2010) or uncertainty of the outcomes of these models (Gillingham et al., 2015). The innovation
modeling comparison project (IMCP, Edenhofer et al., 2006) added two types of frameworks
to introduce endogenous technical change: the energy system modeling that minimize costs in
the energy sector and general equilibrium market balancing demand and supply among agents.
There are in fact varying definitions for both economic and climatic models categorization that
are confusing for the potential users. Grandjean and Giraud (2017) have proposed a critical
review clarifying the underlying concepts and semantics for climate modeling. Indeed, the major
difficulty of this subject lies with its multidisciplinary dimension as it requires energy specialists,
investors, economists, policy makers and engineers to agree on semantics, accounting and modeling
methodologies.

The first source of uncertainty we wish to explore is the specification of damage function
ΩD (t)64. Secondly, maintaining production and growth trends in a neoclassical framework usu-
ally implies introducing endogenous growth and knowledge as, for example, a form of capital stock
affecting productivity65. Indeed, endogenous and induced technical change (ETC and ITC) were
largely analyzed by academic practitioners. Finally, we will explore further specifications to take
interregional trade-flows into account, but also inter-sectoral intermediate demand and network
dependencies. Thus, we provide a review of the financial stress-test frameworks providing snap-
shots of financial and physical exposures accounting for interconnectedness. We conclude this
section by a review of the socioeconomic plausible scenarios that allow us to better understand
the output of these models.

3.1 Climate risks

The computation of the optimal tax66 is based on the impacts of emission on future economic
well-being and thus incorporates damage functions assessing climate risks67 (see Figure 6). The
parameterization of these functions, leading to a climate loss coefficient, is therefore one way

64Introduced in Section 2.2.1 on page 21.
65See Figure 1 on page 10.
66Carbon risk can be defined as agents exposure to the implementation of this tax or pricing system. Similarly the

calibration of the carbon pricing system are based on carbon budget itself depending on potential future damages.
See the glossary for emission trading system.

67See glossary for distinction between carbon, climate and physical risks. This relationship is true for optimization
model only. Carbon price is to be interpreted differently according to the modeling structure (see Section 3.4 on
page 52).
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Figure 6: Relationship between carbon tax τc and damage estimation
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to channel climate risks to the financial system68 despite the huge imperfection of their current
definitions. We recall the climate damage coefficient ΩD (t) = (1 +D (∆TAT (t)))−1

, where ∆TAT

represents the increase in atmospheric temperature. This coefficient represents the fraction of
output, most commonly GDP in global macroeconomic models, lost because of the increase in
temperature. Nordhaus seminal model used a quadratic function of temperature for damages69.
The numerical damage coefficient implied by this specification is given by:

ΩN
D (t) = 1

1 + 2.67 ⋅ 10−3 ⋅∆TAT (t)2 (15)

This function is the numerical expression given on page 21 with a1 = 0 and a2 = 2.67 ⋅ 10−3.
Hanemann (2008) calibrates damages to 7.1% of output at 2.5°C and thus modifies the scale
parameter:

ΩH
D (t) = 1

1 + 12.07 ⋅ 10−3 ⋅∆TAT (t)2 (16)

The shapes of the two specifications are represented as a function of the atmospheric temperatures
by the dotted lines in Figure 7 on page 36. Weitzman (2009, 2010, 2012) transformed the damage
functions to match the DICE estimate at low temperatures and rise to his suggested values at 6°C
and 12°C. To represent his function, we can add onto the two previous functions a higher power
of the temperature to the denominator. The resulting functions match respectively Nordhaus and
Hanemann functions for low temperatures. For the first we have:

ΩNW
D (t) = 1

1 + (∆T (t)
20 )

2
+ (∆T (t)

6 )
6.75 (17)

This function is in red in Figure 7. The second specification with higher damage for low temper-
ature becomes:

ΩHW
D (t) = 1

1 + (∆T (t)
9 )

2
+ (∆T (t)

6.5 )
7.5 (18)

68Note that Mark Carney identified three transmission channels: the physical risks, the liability risks and the
transition risks that are introduced on page 7. Damage functions do not reflect this level of differentiation and
simply introduce a global loss coefficient.

69See Section 2.2 on page 21.
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Equation (18) give the blue logistic shape in Figure 7. Weitzman (2009) indeed suggested to
introduce an exponential-quadratic loss function. The theoretical loss function becomes:

ΩW
D (t) = e−β(∆T (t))

2

Weitzman’s (2009) general definition gives varying results according to the parameter β. Pindyck
(2012) introduced uncertainty using the distribution of the parameter γ affecting the growth rate:

“I assume that in the absence of warming, real GDP and consumption would grow at a
constant rate g0, but warming will reduce this rate: gt = g0 − γ∆T (t)” (Pindyck, 2012,
page 7).

This parameter is included in the model of Daniel et al., (2018), as follows:

ΩDLW
D (t) = e−13.97γ(∆T (t))2

where γ can be drawn from a displaced gamma distribution (Daniel et al., 2018, page 18). We
plot in Figure 7 some examples of the possible damage functions than can be obtained with this
modeling as a function of γ. We notice that when γ is high, we obtain functions with logistic
shapes.

Figure 7: Possible forms of the damage function
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Most function used in the literature were quadratic or logistic. Figure 7 shows these two profiles.
To obtain similar profiles, the IAM RESPONSE (Dumas et al., 2013) introduced the following
damage function:

D (t) = aφ (∆T (t))1+φ + d

1 + e(∆T ⋆−∆T (t))/η2
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where aφ and φ are respectively the scale parameter and the exponent parameter for polynomial
terms, d and η2 represent the influence of logistic effect over a tipping point70 or threshold temper-
ature. For example, φ = 1, d = 0 is the quadratic case, and the sigmoid case (φ = 0). It introduces
a threshold temperature increase ∆T ⋆ above which the jump is triggered in the sigmoid case.

The definition of this function is at the heart of the evaluation of climate risk exposure. How-
ever, damages are mostly globally defined, with little malleability when it comes to distinguishing
damages occurring at specific location or impacting specific stakeholders. These deterministic
functions hardly apply to financial assets and do not differentiate risks of stranding, liability or
transition. In macroeconomic modeling, average temperature is considered to be a good proxy
for the global state but this modeling is not scalable to corporate-specific business. To properly
express climate risks exposure, a family of damages functions, scaled on each impacting param-
eter71, needs to be introduced. The calibration of these functions based on non-existent data
(out of sample) is a great challenge for modelers. More importantly, most parameters are fixed
arbitrarily to fit with a given estimation at a certain temperature. These functions are therefore
subject to much criticisms because of their form and unverifiable parametrization. For instance,
Figure 7 shows that we cannot truly distinguish which coefficient will be effective before we passed
2°C. Another criticism is that the deterministic damage functions used in most IAMs have been
shown to underestimate optimal tax:

“The uncertainty associated with anthropogenic climate change implies carbon taxes
that are much higher than implied by deterministic models. This analysis indicates that
the absence of uncertainty in DICE2007 and similar models may result in substantial
understatement of the potential benefits of policies to reduce GHG emissions” (Cai et
al., 2013, page 2).

To focus now on the global market and the effect of climate on prices, few attempts to project
climate risks on the financial system were published. Bansal et al. (2016) proposed a temperature
augmented long-run risk (LRR-T) model, to account for climate impacts on equity valuation and
consumption:

“Quantitatively, in the data, a one degree Celsius increase in temperature leads to about
−5% decline in equity valuations. [...] In particular, in our baseline LRR-T model, a
one degree Celsius increase in temperature lowers the price of the consumption claim
by about 1.74% ” (Bansal et al., 2016, page 19).

However, this paper also used a quadratic damage function to estimate losses which expose these
results to the previous criticism. The main purpose of this exercise, which consists in calibrating
future damages, is to compute the optimal price of carbon today and generally advocate for imme-
diate action72. Hence, arguing about the form of this function might be, economically speaking,

70See tipping point in the glossary.
71The FUND model has a more detailed specification of damages. The source code, data, and a technical

description of the model are public www.fund-model.org.
72Which had little influence on effective carbon prices worldwide. Therefore it makes sense to reproduce this

type of studies, based on highly hypothetic damage functions calibrated to encourage actions, at a portfolio level to
extend the potential audience to investors and financial actors. However, quantitatively speaking, the legitimacy
of the results will be questionable as long as these functions are involved in the process.
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a misguided subject, while focusing on the possible transition pathways leading to zero industrial
emissions is certainly an interesting topic that requires further attention.

3.2 Modeling technical change

The flourishing literature on climate integrated economy provides a large range of modeling propo-
sitions to identify the levers for transforming the economy to reduce environmental negatives. The
definition of economic output, specified as a simple function of capital, labor and productivity fac-
tor, lacks transparency in terms of energy use and of GHG emissions. This section focuses on
the definition of the net production Q (t) to study how modelers have represented the energy and
knowledge modules and particularly the endogenous or induced technical change.

Figure 8: Traditional capital–labor vs. endogenous technical change
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The structure of the models follows the scheme in Figure 8. The inputs integrate an energetic
module allowing endogenous progress. Formally, this figure can be translated in the following
constant elasticity substitution relation:

Q (t) = Ωclimate (t)
⎛
⎜⎜⎜
⎝
ATFP (t) (K (t)αL (t)1−α)ϑ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Traditional Solow production

+ AEN (t)ETCϑ (t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Energy stock evolving endogeneously

⎞
⎟⎟⎟
⎠

1/ϑ

(19)

where ETC (t) is the function of interest of this section, ϑ represents the elasticity of substitution
between the capital–labor and the energy composite and AEN is the energy technological progress73.
There have being several attempts to specify the behavior of this form of nested production in
the literature. We therefore propose a non-exhaustive review of the mathematical definitions of
the induced technical change, which can be defined as the growth spurt in innovation implied by
climate change. Concretely, the inducing phenomena for these changes can be regulatory policies
and taxation (optimization models) or the ‘demand-pull ’ (Ruttan, 2010) for cleaner production
or climatic incident and shocks (partial and general equilibrium models).

Learning-by-doing Van der Zwaan et al. (2002) developed the de-carbonization model with
endogenous technologies for emission reductions (DEMETER) to introduce endogenous technical
change:

73Sometimes calibrated on an ‘autonomous energy efficency increase’ (AEEI) factor.
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“Technological improvements no longer fall as ‘manna from heaven’, but depend on
up-front investments” (Van der Zwann et al., 2002, page 2).

It is a top-down growth optimization model where the production side is able to choose between
cleaning its future production or keep using fossil energy input including the maintenance and
operation efforts for both sources74. The energy demand and technological change can be endo-
genized according to the scenario. Concretely, induced technological change lowers the cost of
non-fossil input via a learning-by-doing process75. To assess the effect of this phenomenon, the
authors described the production with the single constant elasticity substitution (CES) function.
This paper used Equation (19) but specifically focused on endogenous technical change, therefore,
there were no specifications for damages Ωclimate (t) = 1 and:

ETC (t) = (ENFOS (t)ϕ +ENRNW (t)ϕ)1/ϕ

where ENFOS (t) is the fossil energy input and ENRNW (t) is the non-fossil energy input. The
parameter ϕ represents the elasticity of substitution between fossil and non-fossil energy use.
They also introduced the following distribution of the output:

Q (t) = C (t) + IC (t) + IFOS (t) + IRNW (t) +MFOS (t) +MRNW (t)

where IC (t) is the output saved for future consumption, IFOS (t) and IRNW (t) are respectively
the investments made in fossil and non-fossil energy inputs and MFOS (t) and MRNW (t) are the
respective maintenance and operational (M&O) costs. The learning-by-doing phenomenon, that
will eventually act on both the required investments and M&O costs of renewable energies, is
described thanks to a cumulative capacity:

XENRNW
(t) =XENRNW

(t − 1) +ENRNW (t − 1) − (1 − δ)ENRNW (t − 2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Contribution of the stock over ∆t = 1

where the right term of the equation in the contribution over the period considered76. The scaling
functions h (X) are the key element to introduce the learning-by-doing phenomenon77 as they
allow the capital requirement for both investment and operational management to be defined:

IRNW (t) = aRNW ⋅ h (XENRNW
(t)) ⋅∆XENRNW

(t)

and:
MRNW (t) = bRNW ⋅ h (XENRNW

(t)) ⋅∆XENRNW
(t)

The calibration of the learning curves become the central issue of this type of modeling.

74They investigated four scenarios in addition to the baseline. Note that this one lead to an 2.4°C increase
in temperatures by 2100, which is significantly lower that the one obtained with the unconstrained DICE in
the previous section. A model with carbon capture and storage, DEMETER-CCS, was described in a further
publication (Gerlagh, 2006).

75“The investment costs of specific technologies are – via so-called learning curves – explicitly linked to the
cumulative installed capacity. This reflects the notion of learning-by-doing: the costs of specific energy technologies
decrease as commercial investments and installed capacities accumulate” (van der Zwann et al., 2002, page 2).

76The step commonly used in the literature is five years.
77“This scaling function expresses that with little cumulative capacity installed, it takes relatively more energy-

specific capital and M&O efforts to produce a given level of energy than when a high level of cumulative capacity is
available” (van der Zwann et al., 2002, page 7).
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Learning-by-researching The consideration of learning-by-researching corresponds to the in-
troduction of R&D spending in addition to the accumulation of production capacities. For in-
stance, The model for evaluating regional and global effects (MERGE), developed by Manne and
Richels (1995), is an IAM developed to reflect these effects78. MERGE follows an initiative to
introduce endogenous learning via R&D spending for carbon-free energy technologies. In par-
ticular, some technologies for example, gas-fuel cell with removal, appear in 2020 if sufficient
dedicated R&D investment is made. A more sophisticated version was published in 2005 to define
the endogenous learning formulation.

Popp (2004) introduced a modified version of the aggregated DICE (ENTICE-BR) to incor-
porate endogenous technical change. This model considers that energy prices decrease with the
learning curve but in comparison to DEMETER, it includes both a backstop technology and tech-
nological progress through R&D. The gross production Q (t) is not directly derived from Equation
(19) and is defined as follows:

Q (t) = ΩDATFP (t)K (t)αL (t)1−α−ϑ
ES (t)ϑ − pFOS (t)ENFOS (t) − pB (t)B (t)

where ES (t) are energy services, ENFOS (t) represents the fossil fuels and B (t) the backstop
carbon-free technologies with their respective prices pFOS (t) and pB (t). This form of production
function was introduced in the formulation of RICE–99 (Nordhaus and Boyer, 2000) but without
the distinction between fossil and non-fossil sources nor the introduction of a backstop technol-
ogy79. The ENTICE-BR model introduces a two-nest CES to describe the behavior of energy
related component ES (t)80:

ES (t) =
⎛
⎝
αENKAEN

(t)ρA + (( ENFOS (t)
αFOS EC (t)

)
ρB

+B (t)ρB)
ρB/ρA⎞

⎠

1/ρA

where αEN and αFOS are scaling factors and EC (t) represents the remaining exogenous change in
the ratio of carbon emissions per unit of service81. The deepest nest represents the substitution
of a backstop over fossil fuels introduced by van der Zwaan et al. (2002). The other represents
the allocation in R&D dedicated to climate change. The traditional allocation of the output
between consumption, investment, research efficiency and research for backstops are following the
relationship:

Q (t) = C (t) + IC (t) + IAEN
(t) + IB (t)

78Note that the ETC module follows:

ETC (t) = ENEL (t)ϕ ⋅ENNE (t)1−ϕ

where ENEL is the electric energy-related value added and ENNE is the non-electric input. The form differs slightly
from the one previously introduced but the substitution properties are similar.

79“The current RICE-99 and DICE-99 models do not include backstop technologies. Omitting a backstop tech-
nology implies that the price of carbon energy can rise to extremely high levels in the future. [...] Experiments
indicate that the effect of adding a backstop technology is relatively small over the next century and not worth the
additional complexity” (Nordhaus and Boyer, 2000, page 20).

80“The total energy requirements for production must be met either by the use of fossil fuel or by technological
advances that substitute for fossil fuels” (Popp, 2004, page 7).

81Calibrated to fit the DICE model without R&D.
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where IAEN
(t) and IB (t) are respectively the investment dedicated to improving energy efficiency

or to backstop technology. The knowledge K is cumulative through time for both efficiency AEN (t):

KAEN
(t) = h (IAEN

) + (1 − δAEN
)KAEN

(t − 1)

and for the backstop B (t):

KB (t) = h (IB) + (1 − δB)KB (t − 1)

where h is here a function describing the learning process, called the ‘innovation possibility frontier ’
(Popp, 2004)82. The price of the backstop is defined similarly as for experience curves and use the
progress ratio:

pB (t) = pB (0)KB (t)−η3

where η3 is the parameter representing effect of backstop energy knowledge on prices. This model
also embeds an interesting crowd out dimension which appears to be significant in this model83:

“In the base case, with partial (50%) crowding out of other R&D from new energy
R&D, ITC improves welfare by 9.4%. This falls as low as 1.9% with full crowding out,
and increases to as much as 45.3% without crowding out” (Popp, 2004, page 4).

This phenomenon shows that climate transition can only be achieved through private investment.
The heterogeneity of investors’ beliefs and their willingness to transit to a greener economy is the
remaining uncertain parameter for evaluating the future trajectory in a Kaleckian model.

Hybrid energy models The two previous paragraphs were dedicated to the modeling standard
for global transition in a quite limited environment of possibilities84. The missing piece is to
link this global approach to bottom-up decision making to select energy sources. The world
induced technical changed hybrid (WITCH) model, similarly tracks R&D investments with the
introduction of the energy services ES (t). It was first introduced by (Bosetti et al., 2006) and is
designed to fill this gap between economic top-down models and bottom-up solutions focusing on
the technological dimension. The optimal investment strategy includes a detailed representation
of the energy supply in game theory framework presented in Figure 9. The model is based on the
same scheme presented in Equation (19) and gives the net output for the region r ∈R:

Q(r) (t) = Ω
(r)
climate (t)ATFP (t) (ar (K(r) (t)αL(r) (t)1−α)ϑ + (1 − ar)ES(r) (t)ϑ)

1/ϑ

82In this paper, Popp (2004) also discussed the distinction between learning-by-doing vs. learning-by-researching
based on empirical evidence and references to prior works.

83Crowding out refers to government spending failing to increase overall aggregate demand. In the specific
case of climate change, as demonstrated by Popp (2004), higher government spending in new energy causes an
equivalent (or 50%) fall in private sector spending and investment. The question of crowd out is anecdotal in
IAMs literature, but not for investors. Indeed, expecting government or central banks to take action to face the
climate crisis, similarly to what they did for the financial crisis, investors stay on their position because they do
not expect instantaneous premia investing on R&D for disruptive energy sources. Despite the lack of strong action
from government the mechanism behind the crowding out phenomenon is, so to speak, already on.

84The two dimensions were either fossil vs. non-fossil or electric vs. non-electric. Note however that MERGE
introduces technological possibilities that were not detailed here.
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where the energy service ES (t) also follows a similar definition:

ES(r) (t) = (αESK(r) (t)ϑ2 + (1 − αES) (EN(r) (t))
ϑ2)

1/ϑ2

where αES a substitution parameter between knowledge accumulation and energy spending, K(r) (t)
is the energy knowledge that follows the relationship of accumulation85. The particularity of this
modelling structure is to embed several substitutions elasticities. The first for the integration of
the energy module in the production function (over the traditional aggregate capital–labor86, see
Figure 9) and the others within the definition of the energy module. This way a nested CES
function is introduced where substitution parameters between sources are given. The ease of sub-
stitution is represented by ρ, the case ρ = 1 being the linear or perfect substitutes function87. For
instance, for WITCH the electric sourcing ‘Electric (2)’ E2 (t), allows us to substitute fossil fuel
generation, nuclear or wind and solar energy ρE2 = 288.

The motion of capital becomes:

K(r) (t + 1) = K(r) (t) (1 − δK) + I(r)C (t) − I(r)R&D (t)

where I
(r)
R&D (t) is the investment dedicated to transition. This model has been extended and the

version described in Emmerling et al. (2016) paper is far more advanced and enables complex
scenarios89 to be projected.

This section has shows that there are different ways to model induced technical change in a
forward-looking environment. The differences between models are based on their parameters, func-
tional descriptions and respective complexities. Models involving backstops are criticized because
they rely on non-existent technologies. On the other hand, they also advocate for increasing pri-
vate90 spending on either research for backstop or incremental energy efficiency improvements. If
the optimal taxes, given by macroeconomic optimization models, are not directly relevant because
they cannot be properly implemented, the optimal R&D investment dedicated to the transition
can be assessed. The implementation of ‘optimally controlled investment strategies ’ based on an
optimal amount invested in the transition is, quantitatively speaking feasible. The main pit-
falls for implementation currently concern data availability for the detailed breakdown of capital
expenditure and abatement cost and requires the continuous reassessment of learning curves or
technology prices at a microeconomic level.

85The relationship of accumulation for knowledge in energy as a similar form in most IAMs:

KEN (t) = h (IEN) + (1 − δEN)KEN (t − 1)

86The standard elasticity of ρEVA for energy value added is 40%-50% (Bosseti et al., 2014).

87Similarly for inter-temporal substitutions, the elasticity of substitution is
1

1 − ρ .

88Witch gives for this node:

E2 (t) =
√

ENFOS (t)2 +ENNUC (t)2 +ENW&S (t)2

89In particular, this paper presents the adaptation of this modeling scheme to the shared socioeconomic pathways
presented in Section 3.5 on page 53.

90Because public spending implies a crowd out.
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Figure 9: WITCH model production nest structure
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Source: Bosetti et al. (2014).

3.3 Interconnected Models

Most aggregated approaches of climate change ignore the importance of system interconnectedness,
cascading effect and international trade-flow. This substantial interconnectivity can possibly be
at the root of a new financial crisis and is the source of concern for financial institutions. To
some extent, the liability risks, arising from parties suffering losses and seeking for payment from
those they judge responsible, are physical risks channeled by the legislative or financial system.
This transmission of climate risks among actors demonstrates that the evaluation of the economic
climate risks requires a modular approach, with different specifications for each impacting actors.
The academic literature has tackled this aspect of prime importance to understand the effect of
climate change.

3.3.1 International and CGE models

To approach the macroeconomic dimension of climate change one can use either an international
IAM including trade-flows or a computable general equilibrium focusing on the efficiency of market
responses91. In the first, the challenge is to find the level of aggregation that best reflects the

91Ultimately general equilibrium models obviously embed international trade-flows but we decide to distinguish
here the ‘international and input-output-like’ models from the general equilibrium convergence models.
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complexity of endogenous macroeconomic dynamics in order to provide information on long-term
dynamics. The latter are designed to reproduce dynamics of the real market. They can provide
relatively short- and medium-term price estimates and possibly embed a stochastic dimension. A
macroeconomic statistical assessment module calibrated on past and real-time data would bring
complementary information about the effective market behavior and assist short-term decisions.
In this section, we introduce some academic initiatives to approach the concept of system dynamics
and the application of computable equilibrium models to climate change.

Global dynamic models give a representation of every variables of interest in a dynamic in-
tegrated economy. The DICE is a highly simplified version that aims to define the optimal tax.
To track more subtle change in trends or international markets reactions to political and envi-
ronmental changes, models must embed to some extent further specifications. As an example,
AIM/Global-Dynamics optimization model was developed by Masui et al. (2006) to estimate the
effects of energy-saving technologies and energy efficiency. The entries are deterministic and it
follows the RICE structure for the aggregation of regional utilities. This model considers inter-
regional trade-flows, is structured using twelve equations that represent each region interacting
on the international market. To some extent, this type of model could rely on an input-output
matrix to fit the current flows. The schematic structure of this type of model is presented in
Figure 10 on page 47, which give a better understanding of the global system dynamic. This type
of modeling presents a first representation of the macroeconomic complexity but remains highly
schematic and simplified. The production function is a nested CES for non-energy sector, fossil
fuel producers and electric producers following a similar structure as Figure 9. The strength of this
choice of modeling lies on, for instance, the potential estimation of the cascading effects of trading
agreements, if the model is properly calibrated. Moreover, this structure allows some transition
strategies to be applied, for instance testing over-investing on some key sectors in key regions92.

Golosov et al. (2014) developed a DSGE focused on energy sourcing for production93. This
model provides an extension of the previous ones focusing on the interaction between the inter-
action between energy and non-energy sectors. The market is specified with a two-sided – energy
producers and firms consuming for production – model in which each representative agent maxi-
mize its profits. The energy EN (t) is the output of the producing side while it is an additional

92One of the main challenges for managers dealing with climate change is not to blindly focus on portfolio
decarbonization methodologies based on questionable data, but to consider the transition pathways with further
attention. Optimal allocation might require increasing emissions now in some sectors, to reach the global target.
For instance, the extraction and transportation of raw material M (t) to build, renewable energy networks is likely
to emit GHG, but will most likely improve the global state. The consideration of the entire network is therefore
required to finance the optimal path.

93They defined the production of the final output with a traditional Solow model specified as follows:

Y (t) = EN (t)ν ⋅A (t)K (t)αL (t)1−α−ν

where EN0 (t) = (EN0,1 (t) ..,EN0,nEN
(t)) “denoting a vector of energy inputs used in this final sector at t” (Golosov

et al., 2014). In the production function, which they specified including the damage function, EN (t) is an energy
composite such as:

EN (t) = (κ1EN1 (t)ϑ2 + κ2EN2 (t)ϑ2 + κ3EN3 (t)ϑ2)
1/ϑ2

where ∑3
1 κi = 1 and “parameter ϑ2 < 1 determines the elasticity of substitution between different energy sources,

and κi measures the relative energy efficiency of the different energy sources” (Golosov et al., 2014). Technical
changes are endogenous in this model.
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cost for the non-energy sectors94. In terms of results, this model suggested a higher tax than the
seminal DICE. Indeed, Nordhaus SCC in 2015 is approximatively 30$/tonne of coal compared to
57$/tone for Golosov et al. (2014) DSGE.

To focus on the financial dimension, Benedetti et al. (2019) introduced a way to channel
the potential impacts of carbon pricing on equity prices in order to propose an optimal portfolio
construction under transition risk. They introduced the carbon tax, τc, implemented at time T
with a probability π and assessed its effect on price equilibrium. At each date, a switch can
occur, between pre-tax equilibrium (p∗, q∗) and post-tax equilibrium (p̄∗, q̄∗) affecting supply and
demand for the resource95. The revenue generated by the reserve after carbon pricing is null, if
the exploitation costs (extraction, transportation, storage, etc.) exceed the new mark price and
decrease otherwise (Bennedetti et al., 2019)96.

Policy makers, financial practitioners and the IPCC used a range of advanced models to develop
scenarios97. For instance, the MIT-ISGM is a model resulting from the association of the MIT
Economic Projection and Policy Analysis (EPPA)98 and MIT Earth System Model (MESM). This
model therefore couples complex nesting structure with preferences for final consumption and pro-
ductions. It is a computable general equilibrium model that allows non-homothetic preferences99,
with a quite complex atmosphere-ocean global circulation model. Similarly to AIM/Dynamic-
Global (Masui et al., 2006) it introduces Armington assumption extending the standard modeling
to macroeconomic problems, and inter-regional trade-flows with preferences toward domestic vs.
foreign productions varying according to the sector and region. However, this model is an evalua-
tion model, answering so-called ‘what if ’ questions. It does not allow us to determine the “optimal
policy or to endogenously simulate other behavior of the political actors in the face of economic
and environmental change” (Chen et al., 2015). This type of model can be used in asset pricing

94To give an overview of the general equilibrium problem posed by Golosov et al. (2014) we have the profits
defined for the two types of firm posed as follows:

max
EN,K,L

Πprod(t) = E0

⎡⎢⎢⎢⎢⎣

∞

∑
t=0

q (t)
⎛
⎝
(1 − τi (t))ENi (t) − rKi (t) −wtLi (t) −

nEN

∑
j=0

pj (t)ENi,j (t)
⎞
⎠

⎤⎥⎥⎥⎥⎦

max
Y (t)

Πcons(t) = E0 [
∞

∑
t=0

Y (t) − rKi (t) −w (t)Li (t) −
nEN

∑
i=0

pi (t)EN0,i (t)]

where energy producers maximizes their sales of energy i, q (t) is the quantity sold, (1−τi) is the remaining fraction
after tax, minus its general expenditures and the cost of energy j consumed for the production of i. Thus, the
model accounts for intermediary consumption. On the other hand, the firm consuming simply maximizes its output
given its costs, including the energy supply. This type of modeling, coupled with a nested structure, where the
elasticities would be frequently updated, can be used to identify transition pathways within the energy sector.
Household utility and market clearing must be added to this relationship, as mentioned Section 2.1.3 on page 16.

95Then, they used ‘company-specific forward production curves’ (from Carbon Tracker) to determine the impact
of the new equilibrium on companies revenues.

96While Golosov et al. (2014) targeted the optimal tax in a general equilibrium, this study approaches the
exposure at risk of stranding the reserves RSV (t) extraction process from a portfolio construction standpoint (see
Figure 10 on page 47).

97Some of the most famous scenarios are given in Appendix A.2 on page 68.
98EPPA was developed by Johan Reilly (MIT) and was used in China and Mexico to compute their national

determined contribution (NDC).
99Heterogeneous non-monotonic utility functions. It can explain different pattern of consumption in different

countries.
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to assist managers in both short- and medium-term decisions100 if the behavior of agents is rep-
resentative enough in the situation of interest. The functioning of economic equilibrium of this
model is developed in Paltsev et al. (2005).

The IMACLIM-R model developed by the CIRED is neither a macro nor a CGE strictly
speaking. This model is a recursive general equilibrium that combines an annual static macroe-
conomic equilibrium specification101, and a moving envelope for technical possibilities. This way,
this advanced model embeds short- medium- and long-term constraints:

“while the static equilibrium ensures economic consistency between all flows and rela-
tive prices under short-run constraints at each point of time, the dynamic components
represent the shift across time of these technology, equipment stock and endowment
constraints.” (Hourcade et al. 2015, page 18).

The growth drivers for the economy are the traditional ones (demographic, capital, factor of
productivity, and saving rates) but the model embeds specific definitions for a fossil fuel depletion,
electricity generation, residential energy end-uses, transportation and agriculture industry and
services modules. The interaction between specific modules and the static economic equilibrium
allows us to introduce plausible scenarios. The uncertainty of the output raises with the complexity
of the model for numerous identified reasons, therefore they identified seven key parameters that
are oil and gas markets, Middle East strategy, coal markets, alternative liquid fuels supply, carbon-
free option, energy end-uses technologies and development patterns.

These models give complex representation of the world and can be used either to project
coherent and plausible scenarios or to perform academic overarching critical thinking challenges.
IMACLIM-R model can be associated to others, to encompass a better description of, for example,
the energy module and life-cycle effects. It was indeed associated to the TIAM-FR102 model in
a soft-linking experiment between top-down and bottom-up models (Assoumou et al., 2017).
Financing sustainable scenarios and building smart aligned portfolios could require this type of
association, thus introducing a financial module about which most models are silent so far.

100The notions of short, medium and long can appear rather vague. The idea is that allowing more financial
variables, such as prices, to enter the model allows us to anticipate more plausible outcomes. Therefore, this type
of modeling allows us, while tracking a long-term objective, to make the optimal decision with respect to the market
short- and medium-term constraints.
101Based on 34 equations in the specification given by Cassen et al. (2010).
102The time integrated assessment model (TIAM) describes the global energy system with a high level of disag-

gregation on energy sources, technologies, and end uses (Boubault et al., 2018).
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Figure 10: Example of a modular structure of a global dynamic model
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• The green modules are examples of economic inputs (non-exhaustive). The uncertainty relative to these modules comes from measuring
standards and assumptions.

• The blue modules represent processes. They depends on model uncertainty (See Section 3.4 on page 50).

• The red boxes represent the control variables. These variable are uncertain because hardly measurable. Indeed, utility can be a rather
qualitative concept and payer contributions to the overall emission are not properly measured yet.
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3.3.2 Financial stress-test and network effects

From a financial perspective, risk assessment models are either statistical measures such as VAR103

when historical data are available, or so-called stress-test models. The latter are more suitable
for measuring climate risks. They provide instant information evaluating the impact of a pre-
defined stress on the modeled system. In addition, they are particularly useful for assessing the
undervaluation of these risks due to the omissions of interdependencies. Campiglio et al. (2017)
and Cahen-Fourot (2019) have made an important contribution to the literature on this subject.
The two papers focus on the cascading effects of the risk of the physical capital stranding104.
The initial hypothesis is that some resources will become stranded and that the losses will be
endogenously diffused between non-financial actors as shown by the diagram in Figure 11. This
procedure allows us to assess the capital stock at risk of stranding implied by decarbonization and
its implication on the entire network.

Figure 11: Natural, physical and financial assets at risk of stranding

Source: Campiglio et al. (2017).

In these two papers, the sector classification used is the NACE105. The cascading effects of the
physical risk of stranding were shown to be important and sector-specific:

“We show how, in a sample of ten European countries, mining is among the sectors with
the highest external asset stranding multipliers. The sectors most affected by capital

103See vector autoregression in the glossary.
104 Models assessing this effect are however not integrated assessment models but stress-testing frameworks which

are more commonly used, in the field of finance.
105The term NACE is derived from the French Nomenclature statistique des Activités économiques dans la

Communauté Européenne. Various versions have been developed since 1970. Table 6 on page 78 gives the first
sectoral level of the NACE nomenclature. For instance, sector A is agriculture, sector B is mining and quarrying
and so on until U. However, their studies consider the NACE sectors as far as S.
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stranding triggered by decarbonization include electricity and gas; coke and refined
petroleum products; basic metals; and transportation. From these sectors, stranding
would frequently cascade down to chemicals; metal products; motor vehicles; water and
waste services; wholesale and retail trade; and public administration” (Cahen-Fourot
et al., 2019, page 2).

Formally, the authors introduced S, the matrix of asset stranding multipliers:

S = κ̂G⊺

where G is the Ghosh106 matrix and κ̂ is the sectoral capital intensity vector, the model is able
to deduce the projection on each sector of the stranding consequences of the decarbonization
objectives. Graphically, Cahen-Fourot et al. (2019) gave the chord diagram presented in Figure
12 where we can observe the respective projections of the interdependencies between sectors.
For instance, we can read that the public and administrative sector O does not affect any other
sector, but is however affected by many of them. On the other hand, the mining sector B, is
directly affected by the stranding risks and reports its risks on the manufacturing sector C, and
the electricity sector D.

Figure 12: Chord diagram of S minimal fully-connected network for Germany (2010)

The NACE nomenclature to read this chart is given in Table 6 on page 78.

Source: Cahen-Fourot et al. (2019).

These recent works revealed the interconnectedness of the real economy businesses and their
dependency. A similar study, this time focusing on the financial assets107 at risks of stranding,

106Extending the concept of Leontief Input-output matrix. See NAMEA in the glossary.
107The first-round exposures of the financial actor i toward equity, bonds and loans were computed using:

Oi = ∑
s⊂SCR

∑
j∈s

(αEquity
i,j + αBond

i,j + αLoan
i,j ) +Ri
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and therefore subject to default has been published by Battiston et al., (2017). In particular, this
paper introduces an indirect effect due to the inter-dependency caused by interbank connections:

“Using empirical data of the Euro Area, we show that while direct exposures to the
fossil fuel sector are small (3-12%), the combined exposures to climate-policy relevant
sectors are large (40-54%), heterogeneous, and possibly amplified by indirect exposures
via financial counterparties (30-40%)” (Battiston et al., 2017, page 1)108.

The interconnectedness of the global system is obvious and clearly exposed by these studies.
Climate related risks are therefore ‘everywhere’. In order to be able to assess financial actors and
portfolios exposures, it is necessary to introduce new climate accounting methodologies to track
emissions induced109 by financial activities. The main purpose is to generate climate indicators
that are now drowned in the information flow leading to the construction of ESG scores. For
instance, Rose (2014) has proposed an account-by-issue110 accounting method to better identify
impacting actors and levers of action to influence the climate. This form of accounting has also
been developed in order to be simply applicable to emission induced by financial allocations, the
resulting method is called P9XCA111. Other metrics can be considered112 from the combination
of different elements introduced in this review (targets obtained using optimization models, min-
imization of systematic or network risks, statistical trends and vector autoregressions, etc.). All
in all, we can observe that these models and stress-testing frameworks all provide information on
the possible evolution of macroeconomic and climate variables that are conditioned by the varying
modeling standards. Before using the output of these models as an input in investment processes,
it is important to assess the uncertainty related to their structures.

3.4 Model uncertainty

The model uncertainty refers to the uncertainty of the results due to the multiplicity of modeling
choices. Indeed, the previous part demonstrated the existence of many ways to embed endogenous
or induced technical change in production functions or to model and project to potential damage
on the economy, sectors or assets. In a forward-looking environment, therefore, the legitimacy of
the models is based on the uncertainty relative to their functional structure and on the relevance
of the calculus performed and approximation made.

where Oi is the total outstanding amount of assets of the financial actor i, αi,j ’s denote monetary values of the
exposure of i to the securities associated with economic actor j, Ri is the residual accounting for other instruments
and SCR the set of climate-relevant sectors according to Battinston et al. (2017). The second-round exposure
of the same financial actor i also considers its exposure toward other financial actors i that are also exposed. Is
defined as follows:

Oi =
⎛
⎝∑j∈F

αEquity
i,j (Oj) + αBond

i,j (Oj) + αLoan
i,j (Oj)

⎞
⎠
+
⎛
⎝ ∑k∈S/F

αEquity
i,j + αBond

i,j + αLoan
i,j

⎞
⎠
+Ri

where F denotes the set of financial institutional sectors.
108Quoted from the online version, the abstract in nature page 283 has been changed.
109See induced emissions in the glossary.
110See account-by-issue in the glossary.
111See Appendix A.4 on page 72.
112For instance the NEC, for net environmental contribution, that is an open source initiative to track environ-

mental impact of actors: https://quantis-intl.com/net-environmental-contribution/.
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Table 4: Classification of Integrated Models

Technological detail
Calculus Top-down Bottom-up

Welfare maximization Optimal Growth models
DICE
MERGE
FEEM-RICE
ENTICE-BR
DEMETER
AIM/Dynamic-Global

Cost minimizing Energy System Models
MESSAGE
GET-LFL
DNE21+

Initial value problems Simulation models
E3MG

Static Equilibrium + Computational General Equilibrium
Recursive dynamics IMACLIM-R

Source: Edenhofer et al. (2006).

Edenhofer et al. (2006) compared the outputs of each model categorized in Table 4 with their
provided parametrization. These models are all deterministic. One could add DSGE models since
Golosov et al. (2014) conducted a study on the optimal price of carbon in a decentralized general
equilibrium with stochastic variables, which had little influence in this model113: “specifically,
the stochastic values of future output, consumption, and the stock of CO2 in the atmosphere all
disappear from the formula” (Golosov et al., 2014, page 41-42). To assess the model uncertainty
of the most recent IAMs, Gillingham et al. (2015) used a Monte-Carlo approach on the input
probability density function and with several model functionals114:

Y m =Hm(z,α, u)

This study provides for a range of uncertain inputs, entered into several assessment models to
produce the distribution of the outputs. In particular, they picked three uncertain parameters of
interest namely (i) the rates of growth population, (ii) the rate of growth of productivity and (iii)
the climate sensitivity115. If we rely on the Nordhaus framework, the two first variables correspond
to the socioeconomic module and the third represents the uncertainty within the climate module.
This study therefore explored to some extent both structural and parameter uncertainty.

We note that temperature distributions are similar in every model. They all spread between
1.75°C and 7.33°C and are centered around 3.24°C for the baseline scenario. Moreover, for 95% of

113Note that the targeted value was the optimal tax, the influence of stochastic variable can be more significant
when computing optimal allocation strategies or to assess assets specific climate risks.
114The functional of the following models: DICE v2014; FUND v2014; GCAM, 2011; MERGE v2014; MIT IGSM

v2015 and WITCH 2014.
115See equilibrium climate sensitivity in the glossary.
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Table 5: Distribution of temperature change in the Baseline case 2100 (°C)

Temperature 0.1% 5% 25% 50% 75% 95% 99% 99.9%

DICE 1.60 2.38 3.12 3.76 4.51 5.80 6.88 8.28
FUND 1.96 2.63 3.19 3.19 4.17 5.12 5.92 6.96
CGAM 1.59 2.46 3.23 3.23 4.56 5.73 6.64 7.79
MIT-IGSM 1.30 2.31 3.05 3.05 4.13 4.97 5.58 6.29
MERGE 2.20 2.93 3.61 3.61 4.90 6.12 7.13 8.46
WITCH 1.83 2.60 2.82 3.22 4.23 5.01 5.58 6.22

Average 1.75 2.55 2.79 3.24 4.42 5.46 6.29 7.33

Source: Gillingham et al. (2015).

the runs, temperatures go beyond 2.55°C if nothing more116 is done. The constrained optimization
of the utility post-2016 does not allow us to align on a 2°C trajectory which is in line with these
results. The common approach to reducing modeling uncertainty is to eliminate possible structures
when they do not match empirical observations. However, this mismatch can be due to parameter
uncertainty and modelers are more likely to introduce update parameters than change the entire
structure of their model. If we simply wish to observe temperature distributions of the business-as-
usual case (Table 5) and deduce the value-at-climate-risk of financial positions, the ‘Ockham razor ’
principle would advocate for a ‘DICE-like’ modeling standard. The definition of the transmission
channels between expected change in average temperatures, business cycles and asset prices would
require further assessment.

To focus on the carbon pricing dimension, results are in fact to be interpreted differently
according to the type of modeling. Optimal growth models give the optimal price where the
social cost of carbon SCC (t) is the price maximizing the welfare over time. The shadow price
is explicitly the optimal price of carbon given by the model (as it was for DICE). In optimal
growth models, we can distinguish two sub-categories. The first-best models of the economy give
a Pareto efficient solution, with no market imperfection and, thus, the shadow prices of carbon will
be the social price. The second-best117 optimums do not generally consider a carbon tax strictly
speaking. They simulate the market with imperfections and distortions. The optimal price of
carbon is the price that ensures stabilization with minimum welfare losses. The shadow price
obtained by energy system models is computed by optimization of the energy sector only. The
calculus of this price omits feedback effects between macroeconomics and the energy sector. In
some other models, there is no optimization of the welfare118 and the optimal tax represents only
the required one to achieve stabilization regardless of its effects on consumption (IMACLIM-R).
The introduction of induced technological change approximatively halves the optimal taxes for
the models concerned but has less effect on shadow prices for the others. The model comparison
by Edenhofer et al. (2006) highlighted that results were largely determined by: baseline effects,

116In most contemporary models the baseline has become an extension of the currently implemented regulations
and policies. It is the projected evolution of the current climate action trends.
117The second-best model refers to a situation where at least one of the optimality conditions cannot be solved.
118This choice can be made when modelers ‘refuse’ to use highly hypothetic damage functions (see Section 3.1 on

page 34). Consequently, they cannot model the trade-off to balance future losses, that cannot be quantified. These
models generally focus on the adaptation pathways required to maintain temperatures bellow 2 or 1.5°C.
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first-best or second-best assumptions, model structure, long term investment decision backstop
and end-of-the-pipe technologies. The notion of carbon price is consequently a notion to put into
perspective with respect to the model used to determine the optimal path.

3.5 Shared socioeconomic pathways

The varying modeling standards and the introduction of endogenous technical change (ETC) for
cleaner energy does not bring any enlightenment on how to concretely invest and take action
to reduce climate risks. The models to assess from forward-looking standpoint the evolution
of productive economic systems have been developed but the concrete means to either reduce
negative climate impacts or adapt to face the consequences of human activity are to explore. The
set of plausible scenarios have been defined in the literature and the metrics to assess the exposure
with respect to these scenarios partly approached119.

The models are built to project the trends of variables based on economic and political assump-
tions. It is likely that since the first trajectories were published, the following were, intentionally
or not, calibrated on the same pathways. The question becomes, what would be the answer if
we slightly change the formulation of the problem or if the political environment was to change?
This question has been approached quite pragmatically by practitioners. Conscious of the im-
possibility of constructing a model that projects or predicts the future, some choose to discuss
plausible scenarios based on socioeconomic and policy assumptions. The answers of the system
under these assumptions are based on observed behavioral responses given by society. The result-
ing pathways are called the ‘shared socioeconomic pathways ’ (SSP). These scenarios are simplified
causal responses of the socioeconomic system to the variation of two main dimensions: adaptation
vs. mitigation. Mitigation refers to the capacity to shift quickly toward a greener economy and
consumption while adaptation corresponds to the society’s capacity to adapt to, or at least deal
with, climate change. The latter is the dimension that is most subject to uncertainty and therefore
either ignored or under-evaluated by many assessment models120.

SSP1 an SSP2 are the scenarios that describe a relatively easy transition toward a sustainable
economy while SSP3 represents a closing economy where internal issues force the rise of extremes
and nationalism. The SSP4 is a representation of a multi-level society. We see here that human
capital121 is introduced and plays an essential role in these scenarios. The Taking the Highway
SSP5 translates a high resiliency of the socioeconomic environment toward climate change and,
consequently, nothing is done to reduce negatives as the impacts are limited by the system’s adapt-
ability. SSP3 with the rise of worldwide nationalism is the second worst in terms of temperatures.
It also goes with a more rural and growing population as demonstrated Figure 14, and the worst
economic scenario in terms of GDP because of the closing of trade roads and high protectionist
taxes. SSP5 keeps a constant economic growth rate despite a reduction of population which might
also be due to high urbanization implying, for instance, a higher cost of raising a child in cities.
Defining the investment process as a representative game theory system, where agents choose

119See Appendix A.2 on page 68 to see the varying scenario proposed as input for financial actors.
120In the last specification for the WITCH model the damage function embedded an adaptation factor limiting

the damage. This factor was defined as a function of R&D spending (stock of knowledge) and human capital (or
education) (Emmerling et al., 2016).
121See Section 2.1.1 on page 12.
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Figure 13: The shared socioeconomic pathways

SSP1
Low challenges for both mitigation and adaptation, rapid
development: Sustainability – Taking the Green Road

SSP2
Moderate challenges for mitigation

and adaptation: Middle of the Road

SSP3

High challenges for both mitigation and adaptation: Concern about
competitiveness, security and regional conflict pushing countries
to focus on regional issues: Regional Rivalry – a Roacky Road

SSP4

Low challenges for mitigation hight for adaptation: Un-
equal investment in human capital, concentration of power

in a small business elite: Inequality –A Divided Road

SSP5
High challenge for mitigation low for adaptation:

Fossil-fueled Development – Taking the Highway

Source: O’Neill et al. (2017).

between, in this case, five possible future states, investing under climate constraints becomes a
matter of choosing the most likely or preferable future. Acquiring a two-dimensional view of each
issuer’s behavior and placing investors’ portfolios could help to both reveal the current picture of
wide range of beliefs and to advocate for changes in portfolio positions when possible.

Figure 14: Projections of population, economic growth and urbanization across SSP

Source: Riahi et al. (2017).
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These scenarios are built from the IAMs that were considered by the intergovernmental panel
on climate change122 (IPCC) as the most scientifically legitimate and relevant. However, they
remain only representative path-dependent plausible outcomes; the subject has demonstrated in
this review that there is uncertainty at every level. The results also suggest focusing on the
transition pathways, that allow investors, politicians or non-governmental organizations to act in
favor or against one of these scenarios. Therefore, developing SSP-based solutions would be an
interesting to reduce the dimensionality of the problem.

4 Conclusion

Even the most complex integrated assessment models provide highly schematic patterns and one
can question the representativeness of the projected scenarios. They are indeed often criticized
for bringing illusory scientific legitimacy to projections based on numerous assumptions (Pindyck,
2017). Modelers themselves usually present these models and results as highly hypothetic. These
prior uncertainties in the socioeconomic scenarios, that are usually used as the input to generate
climate indicators by financial actors, convolute the assessment of financial risks implied by climate
change. From a strictly financial standpoint, determining for instance issuers’ risk of stranding
is a non-trivial task either and the current stress-testing frameworks rely on input-output models
with substitution scheme that are still unclear.

Even if they are not designed to provide a robust estimation of the future, IAMs present
a rather representative idea of the efforts that are required to keep the temperatures below a
certain level. Despite these results advocating mostly for immediate reduction of greenhouse
gas123 emissions, policy makers are having difficulties effectively implementing carbon pricing
systems. Indeed, the non-uniform implementation of carbon taxes124 will either reduce local
corporate competitiveness or representative households’ purchasing power. This in turn will affect
affecting political stability and, therefore, potentially GDP as demonstrated by recent events
in France. Moreover, the relatively short presidential terms and the increasing randomness of
electoral processes have highlighted the lack of viability of global agreements in the long run as
the political environment is subject to a change of leadership, among other potential political
and economic disturbances. Therefore, computing the optimal global carbon price seems to have
little impact as both consumption and GHG emissions are following the ‘tragedy of the commons ’
systemic archetype with no commonly accepted and long-lasting authority able to force the current
generation to fix what will become the inherited sentence of the next. On the other hand, central
banks are becoming aware of the no-way-out situation implied by this systemic archetype, and
declared themselves ready to take action to preserve the environment. This would certainly
support the likely introduction of carbon emissions regulations. If they do, their statutes might
allow them to implement effective measures as they are not directly subject to elections125.

122See IPCC in the glossary.
123With some more than others (Stern, 2007). We reiterate that the main influential parameters according which

the optimal carbon price vary are the discounting factor, population, endogenous technical changes and the expected
damage elasticity.
124Respectively the implementation of an emission trading system (ETS) faces the same constraints: they both

require a certain level of homogeneity in beliefs and in willingness to pay.
125Their power is limited in the case of a more nationalist pathway such as the environment described in the
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Despite these numerous pitfalls, portfolio decarbonization methodologies126, that are based on
the scenarios proposed by optimization models, are a consistent first step to reduce transition
risks (or carbon risks) exposure. They also participate in increasing the demand for greener assets
thus acting on issuers’ cost of capital. This dual objective of responsible investment can only be
achieved with a certain level of global commitment from investors. The change in trend appears
to be in favor of responsible investors, as demonstrated by recent papers exhibiting an increasing
interest in responsible investing. Moreover, the integration of extra-financial criteria in investment
strategies appears to be increasingly rewarded as well. The impact of ESG on supply and demand
has already being channeled to the equity market and directly impacted share prices (Bennani et
al. 2018).

ESG scores are aggregated metrics that are not representative of climate risks and climate
relevant indicators must be developed to properly apprehend climate risks from a financial stand-
point. More generally, the introduction of allocation processes based on climate and social risks
is now explicitly required. Indeed, it was noted by Diaz-Rainey et al. (2017) that elite finan-
cial journals have largely ignored climate change and both optimizers and pricing tools are not
adapted to track climate variables. In practice, the ability to implement the solutions suggested
by climate models is so far limited to best-in-class strategies based on perfectible data sources127.
Current climate metrics are generally obtained by computing the standard deviation of the is-
suer reduction target with respect to the snapshot of required reduction published by the most
recent IEA report. These best-in-class strategies, currently applied in ESG scoring system, are
most likely the best concrete and relevant tool we have so far to implement responsible strategies,
however a continuous time integration of both targets and effective reduction would allow more
flexible processes. In addition, if the best way to finance transition is likely to be through the
bond market, for example, investing in green bonds128 or infra funds and making issuing agents
able to cover their respective abatement costs129, then the optimal portfolio allocation strategy on
a diversified universe has to be defined. This could lead to the level of global engagement required,
despite heterogeneity of beliefs, to align temperature on an optimal and realistic path.

Now that the semantic and mathematical concepts have been clarified, the challenge is to
develop an interactive financial modeling framework that provides answers to practical questions.
The assessment of financial risks can be based on the combination of the varying structures
presented in this paper. The main challenge is to construct a normative framework to compare
investors portfolios with respect to climate relevant criteria. The common practice is to construct
financial factors allowing to channel the extra-financial information in the pricing system. The

SSP3.
126The construction of low-carbon portfolios is already proposed on the basis of declarative information or metrics

issued by external providers. Moreover, it has been shown that passive long-term strategy could be decarbonized
without sacrificing financial returns (Anderson et al., 2016).
127See portfolio alignment methodologies in Appendix A.3 on page 70.
128Which is still a very limited option considering the extremely narrow market share they represent. See green

bonds in the glossary.
129We reiterate that models track the optimal trade-off between abatement and future damage. If damage can not

be precisely assessed, abatement cost could quantitatively enter as an additional information in an optimization
framework. However, asset managers and thus investors have so far no direct access to detailed capital expenditures
related to reducing negative environmental impacts. Therefore, both the required cost and effective abatement are
ignored by the finance community.
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construction of risk portfolios (Fama-French, 1992) allow us to rank securities according to one
property of interest and to identify the characteristics priced by the market. The construction of
smart carbon or transition portfolios become therefore an operational issue once we have confidence
in the data used as input. Some more advanced factors could be developed to embed the social
dimension that is indissociable from environmental constraints.

The integration of these multifaceted climate models go further than simply labeling investors
portfolios and monitoring plausible pathways implied by the activities they finance. Indeed, it has
been shown that statistical and quantitative financial models are used to project short-term trends.
International general equilibrium models can provide short- medium- and long-term responses to
stimuli of interest. Welfare optimization models enable long-term objectives to be tracked. One
could also embed machine learning modules to constantly reassess the scale of the responses of
the dynamic equilibrium models. The proper combination of the models and metrics in the field
of asset management could introduce complementary operators providing additional insights in
the decision-making process and generating out-performance during difficult times.
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A Appendix

A.1 Notations

Indices
E Representative economy 17
S Firm (or representative sector) 16
SCR Climate relevant sector 49
F Financial sector 49
H Household (active economical unit) 17
m Possible modeling specification 51
t Time variable 9
r ∈R Region 32
{AT,UP,LO} ∈
LC

Set of geophysical layers for concentrations (atmo-
spheric, upper ocean and biosphere, deep ocean)

22

{AT,LO} ∈ LT Set of geophysical layers for temperature (atmospheric,
upper ocean and biosphere)

22

Parameters
A0 Initial knowledge factor 11
a1 Damage function scale parameter (DICE) 21
a2 Damage function scale parameter quadratic (DICE) 21
αEN ENTICE substitution scale parameter 40
αFOS ENTICE scaling factor 40
αES CES coefficient energy services (WITCH) 42
α Elasticity capital–effective labor 11
b1 Abatement cost scale parameter 22
b2 Abatement cost exponent parameter 22
β Elasticity human capital–effective labor 12
CAT Atmospheric thermal capacity 25
CLO Near surface thermal capacity 25
∆ Time step (for discrete models) 23
δNc Natural capital depreciation rate 13
δK Depreciation for capital 11
δgA Decline of rate of knowledge growth (DICE) 20
δgL Decline of labor force growth (DICE) 20
gA Technical growth rate 11
gK Capital growth rate 13
gL Population growth rate 11
gY Economic growth rate 13
L0 Initial labor input 11
ϑ Elasticity natural capital–effective labor 13
θ Risk aversion (CRRA) 14
ρ Inter-temporal substitution parameter 14
φi,j Temperature diffusion matrix i, j ∈ LT over period ∆
ξi,j Concentration diffusion matrixi, j ∈ LC over period ∆
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Variables
A (t) Knowledge or technical progress Harrod-neutral factor 9
ATFP (t) Total factor of productivity Hicks-neutral 11
AEN (t) Energy technological progress or energy efficiency 38

B (t) Backstop technology 39
C (t) Aggregated consumption 14
c (t) Consumption per capita 14
C (t) Concentration vector 22
CAT (t) Concentration of GHG in the atmosphere 22
CUP (t) Concentration of GHG in the upper ocean 22
CLO (t) Concentration of GHG in the deep ocean 22
D (t) Damage functions 21
e (t) Household endowment 17
E (t) Total emissions 22
ELand (t) Other emissions 22
EL (t) Electric energy input 40
ENFOS (t) Fossil energy 39
EN (t) Energy composite 39
ENRNW (t) Renewable energy 39
ENFOS (t) Fossil energy 39
EX (t) Export 47
F (t) Production function 9
f (t) Reduced form production function 10
FEX (t) Exogenous Forcing 23
FRAD (t) Radiative Forcing 23
G Ghosh matrix 49
H (t) Human capital 12
I (t) Investment 20
IM (t) Imports 47
ID (t) Intermediate demand 47
K (t) Capital stock 9
K (t) Knowledge stock 41
L (t) Aggregated labor input 9
Λ (t) Abatement cost function 21
µ (t) Mitigation ration 22
M (t) Non-energy materials 47
Nc (t) Natural capital 13
NE (t) Non-electric energy input 40
O Total outstanding exposure of financial actor 50
Ωclimate (t) Climate related loss coefficient 13
ΩD (t) Climate related loss coefficient (damages only) 21
p (t) Prices vector 17
Ψi,j (t) Matrix of positions household j portfolio in Firm i 17
Q (t) Aggregated production: net output 19
r (t) Interest rates 16
RSV (t) Fuel Reserves 47
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s (t) Saving rate 20
S matrix of asset stranding multipliers 49
σ (t) Uncontrolled ratio of GHG emission to output 22
T (t) Temperatures vector 25
TAT (t) Atmospheric temperature 21
TLO (t) Low earth surface temperature 25
U Inter-temporal utility function 14
u (t) Utility function 14
w (t) Wage per effective labor 16
Y (t) Aggregated production: gross output 9
y (t) Reduced form gross output 10

67



Economic Modeling of Climate Risks

A.2 Plausible scenarios

A.2.1 Energy mix scenarios

As energy supply is the most carbon intensive sector, and more generally as energy represents
the largest portion of GHG emissions within each sector, the most common way to reduce global
emissions is to impose a global shift in the energy supply side. To encourage this shifting the
international energy agency (IEA), and others, have developed optimal energy mixed pathways
with respect to a range of assumptions.

IEA scenarios They are the input for most of the currently commercialized solutions to build
2°C portfolio methodologies based on the energy mix transition. These scenarios are not a forecast
of the future but explore the different possibilities across the energy system following different
pathways which are highly sensitive to government decisions.

• Current policies scenario is the IEA reference or baseline scenario.

• The new policies scenario (NPS) corresponds to an increase in energy demand, urbanization
in developing countries, in a context where today’s ambitious policies are implemented on
the energy sector.

• The sustainable development scenario (SDS) is similar to the implications of the SSP1 and
represents an integrated approach to achieve international objectives on climate change.

• 2°C scenario (2DS) and Beyond 2°C scenario (B2DS) are optimistic visions to achieve the
2°C scenario.

• Energy technology perspectives (ETP) 2 degrees scenario
ETP 2°C scenario (ETP-2DS) and beyond 2°C scenario (ETP-B2DS) are similar to the pre-
vious ones in terms of targets but does not depend on the appearance of unknown backstop
technologies. All technology options are already available or at a stage of development that
makes commercial-scale deployment possible within the scenario period.

The IEA disclosed a wide range of scenarios130 developed with the world energy model (WEM).
The examples given are the future is electric scenario, the faster transition scenario, the low oil
price case, the energy for all case, the 450 scenario, the clean air scenario, the bridge scenario,
the 4-for-2 scenario, the emissions of air pollutants or the efficient world scenario, etc.

Deep decarbonization pathways The deep decarbonization pathways project (DDPP)131 is
a global collaboration of energy research teams developing practical decarbonization pathways.

130Source: https://www.iea.org/weo/weomodel/.
131Source: http://deepdecarbonization.org/about/.
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Energy [r]evolution Greenpeace developed three scenarios to show the wide range of possible
pathways in each world region for a future energy supply system:

• a reference scenario reflecting a continuation of current trends and policies.

• energy [r]evolution scenario: designed to achieve a set of environmental policy targets re-
sulting in an optimistic and feasible pathway towards a widely decarbonized energy system
by 2050.

• the advanced energy [r]evolution scenario, representing an ambitious pathway towards a fully
decarbonized energy system by 2050.

Other scenarios have been developed, for instance, the international Renewable energy agency
(IRENA) proposed the REmap case that leads with a probability of 66% that the increase of
temperatures can be kept under 2°C132. Broadly, the idea is to propose a sectoral vision of the
energy transition pathways in each region.

A.2.2 IPCC Scenarios

The scenarios discussed by the IPCC are far more detailed plausible representations of the future
development of GHG emissions based on a coherent and consistent set of assumptions about
driving forces, such as demographic and socioeconomic development, technological change, energy
and land use, and their key relationships. In other words, if we previously presented scenario
focusing on the energy mix, these scenarios allow more complex interaction between energy side
and socioeconomic environment. Each scenario is defined in completion with:

• A shared socio-economic pathway (SSP)133,

• A representative concentration pathway (RCP)
These pathways are time series of emissions and concentrations of GHGs. The term pathway
emphasizes that not only are the long-term concentration levels of interest, but also the
trajectory taken over time to reach that outcome (IPCC; Moss et al., 2010). Four RCPs
produced from IAMs selected by the IPCC are used in IPCC Assessment as a basis for the
climate predictions (IPCC):

– RCP 2.6 :
One pathway where radiative forcing peaks at approximately 3 W/ m2 before 2100 and
then declines (the corresponding ECP assuming constant emissions after 2100).

– RCP 4.5 and RCP 6.0 :
Two intermediate stabilization pathways in which radiative forcing is stabilized at ap-
proximately 4.5 W/m2 and 6.0 W/m2 after 2100 (the corresponding ECPs assuming
constant concentrations after 2150).

132The Cumulative CO2 by 2050: 760 Gt and Annual CO2 in 2050: 9.7 Gt/yr (Global Energy transformation,
IRENA, 2018).
133See Section 3.5 on page 53.
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– RCP 8.5 :
One high pathway for which radiative forcing reaches ≥ 8.5 W/m2 by 2100 and continues
to rise for some amount of time (the corresponding ECP assuming constant emissions
after 2100 and constant concentrations after 2250).

• The social policy assumptions (SPA)
These parameters are policies that appear to be likely given the political environment in
each region and the observed trends. For instance, these assumptions are what distinguish
the IEA’s NPS and CPS energy scenarios.

A.3 Portfolio alignment methodologies

The carbon intensity or footprint of the portfolio is often computed and compared to IEA projec-
tion to assess the alignment of the portfolio with the 2°C scenario. However, climate alignment
and particularly portfolio alignment is still a quite blurry concept. In simple terms, there is no
one way to define one’s ‘alignment ’ with respect to what everyone else is doing simultaneously.
For instance, it “is defined as the compatibility of projected future production of the companies
in the portfolio with energy and technology trends in the 2°C scenario” according to the 2°C
investing initiative. This definition leads to assessing the technology mix exposure, therefore the
2°C portfolio must be in line with IEA estimate of the required energetic mix to remain under
2°C by 2100. Other would prefer the sectoral decarbonization approach or GHG emission per
value added: defined as the matching of issuers science based targets134 with IEA requirements.
The varying definitions lead to some comparative studies of the methodologies. Faria and Lab-
utong135 (2015), defined three main possible mathematical expressions: “linear reductions from
base year to a pre-defined target (LERTY); value added methods (GEVA and C-FACT); and the
sectoral decarbonization approach (SDA)”. The different methodologies studied have the following
expressions:

• LERTY
If reduction µR is required, then target year (Ety) emissions will be (1 − µR) multiplied by
emissions in base year (Eby):

Ety = Eby × (1 − µR) (20)

The linear pathway between base year and target year with T = ty − by (number of years to
target) and n = y − by (years after base year):

En = Eby ×
Eby × µR

T
× n

• C-FACT
Equation (20) is used to define emissions in target year. The target is given as an intensity

134See science based targets in the glossary.
135Download available here: https://www.researchgate.net/profile/Pedro_Faria2/publication/

275210159_A_Review_of_Climate_Science_Based_GHG_Target_Setting_Methodologies_for_Companies/

links/553504ac0cf2ea51c1338d55
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in tCO2/$ following:

CIn = CIby ×
⎛
⎝

(1 − µR)1/T

(1 +CAGR)
⎞
⎠

n

(21)

where (CIby) is the initial base year emissions and the gross profit of company in the base
year which determine the company’s base year intensity; the emission reduction imposed by
the model for target year µR that depends on geography136; the compound annual growth
rate (CAGR), used to calculate the projections into the future of the company’s gross prof-
its. The term (1 −R)(1/T ) Equations (21) and (22) gives the CEDR (Compound Emission
Decarbonization Rate).

En = Eby × (1 − µR)1/T
(22)

• GEVA
The arithmetic approximation (and simpler) version of geometric Equation (21) follows:

CIn = CIby × ((1 − µR)1/T −CAGR)
n

(23)

Likewise, Equation (24) results from applying the same simplifications to (23) to derive En.

En ≈ Eby × (1 − µR)1/T
(24)

Despite this apparent difference in formulation, the main difference between GEVA and C-
FACT is that all companies are assumed to grow at the same rate as the projected world
economy and all companies have to equally reduce emissions by 50% by 2050 (outdated
targets).

• sectoral decarbonization approach (SDA)
For homogeneous sectors, the emissions in the target year will be equal to the company
intensity times the activity in the target year:

Ety = CIty ×Aty

where the parameters can vary from one company to another. Company intensity is deter-
mined by:

CIy = d × py ×my + SI2050

which sets a convergence pathway from the company intensity in the base year to the sector
intensity required in 2050 (SI2050). The parameters of the expression are d the distance
between company intensity in the base year and the sector intensity in 2050:

d = CIb − SI2050 (25)

136For instance, the reduction target were 85% of GHG in developed countries and 50% in developing countries
in 2015 (Faria and Labutong, 2015).
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py which gives the pace at which the convergence will occur. It follows the shape of the
sector intensity pathway

py =
SIy − SI2050

CIb − SI2050

my is a corrective factor that modulates the company intensity depending whether the
company grows faster or slower than the sector activity:

my =
CAb/SAb

CAy/SAy

For heterogeneous sectors, the value-added method is used and so expressions are formally
equivalent to the ones presented in C-FACT and GEVA. The main difference is that all
assumptions concerning growth of the sector and its reductions are concentrated in the
sector CO2 emissions pathways derived from IEA modeling. Thus, the reduction µR to
target year is given by (SEty/SEby) and the company intensity for a given year y is simply
given by (SEy/SEby).

Ety = Eby × (1 − µR) (26)

CIy = CIby × (SEty/SEby) (27)

This study also shows that the methods are varyingly effective according to the sector and that
the correct / optimal answer could be based on their optimal combination. The targets in this
presentation are outdated and must be adjusted to each regulatory announcement. Here again,
the weighted sum of carbon intensities can lead to the construction of ‘aligned portfolios’.

These varying definitions, based on varying requirements and projections raise the question
of feasibility and concrete implementation of this concept in multi-asset allocation strategies.
Issuers’ mitigation strategies with respect to the global expected reduction of GHG emissions
must be defined in order to allow allocations that reduce the risk of divergence (from the 2°C
reference). The challenge is then to assess the dynamic evolution of issuers’ mitigation over the
long-term. Another definition we could think of could be based, for example, on the cap-weighted
amount Itrans of securities favoring the transition in the portfolio; requiring it to be equal to the
optimal Pigouvian tax, and balancing the SCC.

A.4 P9XCA: Accounting for induced emissions

P9XCA is an accounting methodology resulting from the partnership between the chair of Finance
and Sustainable Development (Finance et Developement Durable) Paris Dauphine University (P9)
Ecole Polytechnique (X) and Crédit Agricole (CA) and presented in Rose’s (2014) thesis. This
methodology aims at defining a sectoral and regional mapping of the order of magnitude of GHG
induced by financial activities (Rose, 2014). This methodology is said to be applicable to any
financial activity without multiple counting using the accounting by issue approach. The main
principles are:
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• A macro-economic approach (top-down) adapted to a banking activities portfolio.

• Simple methodology to define the induced emissions Ie (s, c, i), by the financial actor i for
the sector s in the country c based on the following equations:

Ie (i) = ∑
k∈c
∑
p∈s
Oa(p, k, i) ×Ap,k (28)

Ie (s, c, i) = Oa(s, c, i) ×As,c (29)

Ie (s, c, i) = Oa(s, c, i) ×
Etot(s, c)

(Equity +Dept)(s, c)
(30)

Ie (s, c, i) = Sf,i ×Etot(s, c) (31)

where Oa(s, c, i) is the outstanding amount of the financial actor i in the cluster (s, c), As,c is
the emission intensity factor of this cluster, Etot(s, c) is its global effective annual emissions
flow. The financial share Sf,i is defined as the fraction of banking outstanding amount in
the cluster (s, c) with the sum of both equity and debt volumes. This allows to assess the
risk of multi-asset strategy (not only equity).

• No multiple counting because of the use of account-by-issue technique137.

• Based on public, free and open-source data (National Reporting Inventories), to avoid to
relying on black box private processes.

This model is recognized to be mostly a reporting tool, not precise enough to drive, or control,
the allocation decision process. However, it allows us to simply assess the emissions induced by a
portfolio (if the mapping between issuers and sectors is reliable).

A.5 MPC–DICE Optimization

This section provides a review of the formalized optimal control problem proposed by Kellett et al.
(2018). The discrete indexation is defined such as: ∆t = 5 years. It will be noted ∆ for simplicity
in accordance with the notation used in the original paper. We have previously introduced the
six endogenous variables of the model: 2 temperatures (in °C): TAT, TLO; 3 carbon concentrations
(in GtCO2eq): CAT, CUP, CLO, and the global capital (in trillionsof 2005USD): K. They answer the
following dynamics:

[TAT(t + 1)
TLO(t + 1)] = [φ11 φ12

φ21 φ22
] [TAT(i)
TLO(i)

] + [ξ1

0
]FRAD(t) (32)

⎡⎢⎢⎢⎢⎢⎣

CAT(t + 1)
CUP(t + 1)
CLO(t + 1)

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

ξ11 ξ12 0
ξ21 ξ22 ξ32

0 ξ32 ξ33

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

CAT (t)
CUP(t)
CLO(t)

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

ξ2

0
0

⎤⎥⎥⎥⎥⎥⎦
E(t) (33)

137See account-by-issue in the glossary.
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K(t + 1) = (1 − δK)∆K(t) +∆I(t)
= (1 − δK)∆K(t) +∆Q(t)s(t)

K(t + 1) = (1 − δK)∆K(t) +∆( 1

1 + θ2TAT (i)2
)(1 − b1(t)µ(t)b2)ATFP(t) ×

K(t)αL(t)1−αs(t) (34)

were s(i) = I(i)/Q(i) is the saving rate and Q(t) was defined in the previous section using
the Cobb-Douglass relationship. The exogenous influential signals are defined by the following
relationships:

E (t) = (1 − µ(t))σ(t)ATFP(t)K(t)αL(t)1−α +Eland(t)

FRAD(t) = ηlog2 (
MAT(t)

MAT (1750)
) +FEX(t)

σ(t + 1) = σ(t)exp(−gσ(1 − δσ)∆(t−1)∆)

L(t + 1) = L(t)( L∞
L(t)

)
lg

ATFP(t + 1) = ATFP(t)
1 − gAexp(δA∆(t − 1))

Eland(t) = ELO(1 − δEL)t−1

FEX(t) = f0 +min{f1 − f0,
f1 − f0

tf
(t − 1)}

θ1(t) = pb
θ2

(1 − δpb)t−1σ(t)

were the parameters are given Table 3.The utility function represented by the social welfare,
follows:

u (C(t), L(t)) = L(t) ×
(C(t)L(t))

1−θ
− 1

1 − θ
and the consumption (C) is:

C(i) = 1

1 + a2T a3AT
(1 − θ1µ(t)θ2)ATFP(t)K(t)γL(t)1−γ(1 − s(t))

The optimal pathways are derived by maximizing the social welfare at each step (infinite horizon
optimal control model):

max
s,µ

∆ × scale1×
∞
∑
t

U[C(t), L(t)]
(1 + ρ)∆

− scale2 (35)

subject to (32) − (34)
µ(t), s(t) ∈ [0,1]2 ∀t ∈ [1, T ]

The social cost of carbon is defined by the ratio of the marginal welfare with respect to emissions
and consumption:

SCC(t) = ×∂W /∂E (t)
∂W /∂C(t)
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The state vector is defined as follows:

x̃ = [t T C K σ L ATFP Eland FEX]⊺

xaux = [E(t) C(t) µ(t) s(t)W (t)]⊺

x̃ embeds 12 dimensions, xaux describes the behavior of the five variables above. Combining the
two we obtain:

x(t) = [x̃(t)⊺ xaux(t)⊺]⊺

w(t) = [µ(t + 1) s(t + 1)]⊺

x(t + 1) = f(x(t),w(t)), x(1) = υ

where f : R17 ×R2 → R17 is given by (10) to (35). This function basically translates the system
dynamics. For instance, f1 is the indexation, f2 to f4 translate temperature dynamics and so on.
f17 is the update of the social welfare utility function such as:

x17(t + 1) = x17(t) +
U(x12(t), x9(t))
(1 + ρ)∆(t−1) x17(1) = 0

Algorithm 1 returns (Kellett et al., 2018):

• The optimal state trajectory x∗(t); t = 1, ...,N + 1, which contains the savings rate, x∗15(t),
and the mitigation rate, x∗16(t).

• The optimal adjoint variables λ∗E and λ∗C which are given by the Lagrange multipliers associ-
ated with the equality constraints implied by the dynamics of E(t) = x13(t) and C(t) = x14(t).

The Lagrange multipliers are typically provided by modern nonlinear programing solvers such as
interior-point optimizer (IPOPT; Wächter, 2006).
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Algorithm 1: Model Predictive Control – Dynamic Integrated Climate Economy – Pro-
posed by Kellett et al. (2018)

Input:
Simulation horizon Nsim,
Prediction horizon N ,
Initial conditions x(1) = υ
Dice dymamics function f ∶ R17 ×R2 → R17

for i == 1 do

max
w,υ

x17(N + 1)

subject to:

x(i + 1) = f(x(i),w(j))
x(1) = υ

υk = xk(1) k ∈ {1, ...17} ∖ {15,16}
υk ∈ [0,1] k = 15,16

w(i) ∈ [0,1]2 ∀i ∈ [1,N]

Set

x(1) ← x∗(1∣1)
λE(1) ← λ∗E(1∣1)
λC(1) ← λ∗C(1∣1)

for i == 2, ...,Nsim do

max
w,υ

x17(N + 1)

subject to:

x(i + 1) = f(x(i),w(j))
x(1) = x∗(2∣i − 1)
w(i) ∈ [0,1]2 ∀i ∈ [1,N]

Set

x(i) ← x∗(2∣i − 1)
λE(i) ← λ∗E(2∣i − 1)
λC(i) ← λ∗C(2∣i − 1)

Result: Optimal trajectory for state variable x∗(i) ∀i ∈ [1,Nsim]
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A.6 Complementary materials

Figure 15: DICE 2013 - 2°C
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Table 6: NACE Rev.2 sectors (level 1)

Sector code Sector description
A Agriculture, forestry and fishing
B Mining and quarrying
C Manufacturing
D Electricity, gas, steam and air conditioning
E Water supply, sewerage, waste management and remediation activities
F Constructions
G Wholesale and retail trade, repair of motor vehicles and motorcycles
H Transportation and storage
I Accommodation and food service activities
J Information and communication
K Financial and insurance activities
L Real estate activities
M Professional, scientific and technical activities
N Administrative and support service activities
O Public administration and defense, compulsory social security
P Education
Q Human health and social work activities
R Arts, entertainment and recreation
S Other services activities
T Activities of households as employers, undifferentiated goods and service
U Activities of extraterritorial organizations ans bodies

Source: https://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl=
LST_NOM_DTL&StrNom=NACE_REV2&StrLanguageCode=EN.
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Figure 16: DICE 2013–Optimal Control Rate
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Figure 17: DICE 2016–Optimal Control Rate
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B Glossary

Abatement Costs also called mitigation costs,
they are the costs of reducing environmental negatives.
In practice this cost are given in term of relative pro-
duction, we talk therefore about marginal cost, which
measures the cost of reducing by an additional unit.
The marginal abatement cost (MAC), measures conse-
quently the costs of reducing GHG emissions by one ad-
ditional unit and generally measured in $/tCO2eq. They
are usually deterministic static function with poor rep-
resentation of spacial and temporal dynamics. Sectors
specificities are poorly represented despite the increasing
complexity of the models. These functions have there-
fore been largely criticized by the academic literature
(Kesicki and Ekins, 2012; Levihn, 2016; Taylor, 2012;
Ward, 2016; Wallis, 1992). They are often computed
as “proportional to global output and to a polynomial
function of the reduction rate”, µ (t). the parameters
are usually fitted on bottom-up studies such as McKin-
sey (2009) estimates for Daniel et al. (2018) (similarly
as Nordhaus):

Λ (µ (t)) = b1µ (t)b2

For a more complex example, the RESPONSE (Dumas
et al., 2012) model proposed the following abatement
cost function:

Λ (µ (t)) = ATFP(µ (t) ζ + (pB − ζ)
(µ (t))ν

ν
+

ξ2(µ (t) − µ (t − 1))2)

were:

• µ (t) mitigation rate at t,

• pB price of the backstop technology,

• ξ inertia effect (Ha-Duong et al., 1997), introduc-
ing a penalization when the increase of the reduc-
tion is too abrupt,

• ζ is the marginal cost of abatement when abate-
ment is null,

• ATFP represents the technical changes factor.

Other model representing abatement cost can be devel-
oped (see for example Kiuila and Rutherford, 2011)138

but the questions about their lack transparency and the
poor treatment it makes of uncertainty (etc.) remains.

Account-by-Issue is defined by Rose (2014) as
follow: “the economic issue or challenge of an eco-
nomic agent is the amount of GHG emissions that this
agent would be likely to reduce in an economy where
strong constraints would be introduced on GHG emis-
sions. These constraints on GHG emissions translate
into carbon cost, the internalization of these additional
costs leads to a decrease in demand for carbon goods in
favor of less carbonaceous goods.”139 The central idea
is that this type of carbon accounting allocates GHG
emmissions oberved to economic agents possessing the
decision making and leverage power to reduce them. Ac-
countability carbon by stake makes it possible to explain
the “fundamental responsibility ” of each activity eco-
nomic, which corresponds to the choice of the technolog-
ical processes that it implements in its activity, and the
quantity and quality of the goods and services it offers140

(Rose, 2014). This accounting method particularly allow
to avoid multiple counting, while accounting based on
carbon scopes (see Carbon Scopes) can not avoid this.

AOGCMs for Atmosphere-Ocean Global Circula-
tion Models are climate models, using Navier-Stokes
equation on rotating sphere and thermodynamics terms
(radiation, latent heat), that simulate Atmosphere and
Ocean behavior. It can be of use to dispatch geo-
graphically the consequences of a rising temperature (see
Collins et al. 2006; Meinshausen et al., 2011).

Backstop Technology “is defined as a new tech-
nology producing a close substitute to an exhaustible
resource by using relatively abundant production inputs

138Download available here: https://www.wne.uw.edu.pl/files/7013/9628/6009/WNE_WP52_2011.pdf
139Translated from French: “l’enjeu climatique d’un agent économique est la quantité d’émissions de GES que

cet agent serait susceptible de réduire dans une économie où seraient introduites des contraintes fortes sur les
émissions de GES. Sous des contraintes portant sur les émissions de GES qui se traduisent par un coût des
émissions, l’internalisation de ces coûts supplémentaires entra5̂ne une diminution de la demande en biens carbonés
au profit de biens moins carbonés” (Rose, 2014).
140Translated from French: “Ce type de comptabilité carbone alloue les émissions de GES observées aux agents

économiques possédant le pouvoir de décision et le levier d’action nécessaire pour les réduire. La comptabilité
carbone par enjeu permet d’expliciter la responsabilité fondamentale de chaque activité économique, qui correspond
au choix des procédés technologiques qu’il met en oeuvre dans son activité, et des quantités et de la qualité des
biens et services qu’il offre” (Rose, 2014).
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and rendering the reserves of the exhaustible resource ob-
solete when the average cost of production of the close
substitute falls below the spot price of the exhaustible
resource (Dasgupta and Heal, 1978). For instance, the
technology of harnessing solar energy can be perceived
as a backstop technology to oil, coal and natural gas.
Hence, the development of a backstop technology short-
ens the planning horizon and”, in turn, “the presence of
a backstop technology also lowers the spot prices of the
exhaustible resource and accelerates its extraction and
depletion” (Levy, 2000).

Baseline The baseline (or reference) is the state
against which change is measured. A baseline period is
the period relative to which anomalies are computed. In
the context of transformation pathways, the term base-
line scenarios refers to scenarios that are based on the
assumption that no mitigation policies or measures will
be implemented beyond those that are already in force
and/or are legislated or planned to be adopted. Base-
line scenarios are not intended to be predictions of the
future, but rather counterfactual constructions that can
serve to highlight the level of emissions that would occur
without further policy effort. Typically, baseline scenar-
ios are then compared to mitigation scenarios that are
constructed to meet different goals for GHG emissions,
atmospheric concentrations or temperature change. The
term baseline scenario is used interchangeably with ref-
erence scenario and no policy scenario. In much of the
literature the term is also synonymous with the term
business-as-usual (BAU) scenario, although the term
BAU has fallen out of favour because the idea of busi-
ness as usual in century-long socio-economic projections
is hard to fathom. See also Emission scenario, Represen-
tative Concentration Pathways (RCPs) and SRES sce-
narios (IPCC, 2014).

Carbon Budget defines the amount of carbon
dioxide that a country, company, or organization has
agreed is the largest it will produce in a particular pe-
riod of time: The Committee on Climate Change will ad-
vise the government on staying within its carbon budget
(Cambridge dictionary). This concept previously intro-
duced aims to maintain the flow of GHG emissions under
a certain level (Es on the figure below: Carbon Budget
and abatement, Source: Reproduced from Vogt-Schilb
et al., 2013), the one the environment is able to absorb
through oceans, which only shift the problem as it in-
crease their pH (Caldeira and Wickett, 2003), or forests
for example. For instance, µi(t) being the abatement
realized by the sector i at t, we can graphically induce
that B(t) = ∫

t
0 ∑i µi(t)dt − tEs(t).

time

GtCO2/year

Es = cst

Ed(t)

time

GtCO2/year

Carbon Equivalent (CO2eq) “Carbon dioxide
equivalent or CO2e is a term for describing different
GHG in a common unit. For any quantity and type
of GHG, CO2e signifies the amount of CO2 which would
have the equivalent global warming impact. A quantity
of GHG can be expressed as CO2e by multiplying the
amount of the GHG by its Global Warming Potential
(GWP). E.g. if 1kg of methane is emitted, this can be
expressed as 25kg of CO2e (1kg CH4 × 25 = 25kg CO2e).
CO2e is a very useful term for a number of reasons: it al-
lows bundles of GHG to be expressed as a single number,
and it allows different bundles of GHGs to be easily com-
pared (in It is also worth noting that CO2e is also some-
times written as CO2eq, CO2equivalent, or even CDE,
and these terms can be used interchangeably”(Brander,
2012).

Carbon Dioxide Capture and Storage
(CCS) A process in which a relatively pure stream
of carbon dioxide from industrial and energy-related
sources is separated (captured), conditioned, compressed
and transported to a storage location for longterm iso-
lation from the atmosphere (IPCC, 2014).

Carbon Dioxide Removal (CDR) Carbon
Dioxide Removal methods refer to a set of techniques
that aim to remove CO2 directly from the atmosphere
by either (1) increasing natural sinks for carbon or (2)
using chemical engineering to remove the CO2, with
the intent of reducing the atmospheric CO2 concentra-
tion. CDR methods involve the ocean, land and techni-
cal systems, including such methods as iron fertilization,
large-scale afforestation and direct capture of CO2 from
the atmosphere using engineered chemical means. Some
CDR methods fall under the category of geoengineer-
ing, though this may not be the case for others, with
the distinction being based on the magnitude, scale and
impact of the particular CDR activities. The bound-
ary between CDR and mitigation is not clear and there
could be some overlap between the two given current def-
initions (IPCC, 2012b, p. 2). See also Solar Radiation
Management (SRM) (IPCC, 2014).

Carbon Credits or Licenses are an allowance
that certain companies have, permitting them to burn a
certain amount of fossil fuels (Collins dictionary). For
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a better understanding of this concept go to Emission
Trading System.

Carbon Intensity is the amount of emissions of
carbon dioxide (CO2) released per unit of another vari-
able such as Gross Domestic Product (GDP), output en-
ergy use or transport (IPCC, 2014).

Carbon Footprint is a measure of the total
amount of carbon dioxide (CO2) and methane (CH4)
emissions of a defined population, system or activity,
considering all relevant sources, sinks and storage within
the spatial and temporal boundary of the population,
system or activity of interest. Calculated as carbon diox-
ide equivalent using the relevant 100-year global warm-
ing potential (GWP100) (Wright et al., 2011). This met-
ric can be expressed as the absolute value of tCO2eq/$
(or e) invested or as a carbon intensity (used in value
added models).

Carbon Pricing is the basic idea of putting a price
on GHG emissions. The ways to do so are mainly the
tax and ETS described in (Carbon Risks, Carbon Cred-
its, and Emission Trading Systems).

Carbon Risks gather the potential financial losses,
direct or indirect through the value chain, due to GHG
emissions. Concretely, it is the financial exposure to rep-
utational risks (economic and market risk) or regulatory
(credit and market risks). The regulatory risk can be
measured as a conditional Value-at-Risk (VaR) subject
to the optimal tax or quotas required to reach, in the hy-
pothesis of a lump-sum refunded carbon tax, to reach,
for example the 1.5°C scenario which lead to zero emis-
sion in 2050 (IPCC, 2014; Hulme, 2016).

Carbon Scopes (ISO 14064) divides compa-
nies’ emissions into 3 Scopes according to the Green-
house Gas Protocol. define the accounting and report-
ing standards companies can adopt disclosing their emis-
sions.

• Scope 1: Direct GHG emissions covers all direct
GHG emissions by a company.

• Scope 2: Electricity indirect GHG emissions from
consumption of purchased power: electricity, heat
or steam (etc.). The proper way to quantify this
scope would require a suitable mapping of energy
mix supply of issuers’ facilities. Some have in-
troduced real-time accounting methods based on

open sourced data141 which could allow to bet-
ter identify issuers contribution to global emission
(Tranberg et al., 2018).

• Scope 3: Other indirect GHG emissions such as
the extraction and production of purchased ma-
terials and fuels, transport-related activities in
vehicles not owned or controlled by the report-
ing entity, electricity-related activities (e.g. T&D
losses) not covered in Scope 2, outsourced activi-
ties, waste disposal, etc. Scope 3 emissions (also
known as value chain emissions) often represent
the largest source of GHG emissions and in some
cases can account for up to 90% of the total car-
bon impact. To some extent this scope is the main
focus of P9XCA method. Indeed, if we focus on
scope 1 and 2 the emission induced by banking
activity would be negligible.

Climate Risks are the risks related to climate sen-
sitivity of a security because of its dependencies or its
geographic positions. Therefore, it regroups technolog-
ical transition and physical risks. This transition con-
cerns the product and not the process. For instance,
climate risks for a car manufacturer embeds to what
extent the actor is able to shift its business toward a
cleaner transportation, but not how much it has to pol-
lute to produce his new products. The second would
go into carbon risks. This distinction, made in this pa-
per, is not a commonly accepted reference, however, it
allows to better project and understand the stake at an
issuer level. More concretely, climate risks embed future
expected impact on companies’ businesses while carbon
risks are mostly quantified by the amount they would
have to pay if the optimal Pigouvian tax were imple-
mented (see Pigouvian Tax). We can note that these
risks are not totally independent as their prevention re-
sults in quite similar concrete actions from companies or
policy maker: the first can reduce their GHG emissions
and the second can implement policies forcing everyone
to do so. It is however more a question of where we stand,
and from a portfolio management perspective these two
risks must be distinguished in order to by quantified.
However, the computation of the optimal tax is based
on the impact of emission on future economic well-being
and so incorporates damage functions assessing climate
risks.

Cumulative Radiative Force (CRF) The
strength of drivers is quantified as Radiative Forcing
in units watts per square meter (W/m2) as in previ-
ous IPCC assessments. Radiative Forcing is the change

141https://www.electricitymap.org/.
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in energy flux caused by a driver and is calculated at
the tropopause or at the top of the atmosphere (IPCC,
2014).

Discounting and Discount Rates mathemat-
ical operation making monetary (or other) amounts re-
ceived or expended at different times (years) comparable
across time. The discounter uses a fixed or possibly time-
varying discount rate (> 0) from year to year that makes
future value worth less today (IPCC, 2014). Lower dis-
count rates increase the importance of the outcomes in
later years (ex: Stern, 2007). There is no consensus on
its value in the literature however Stern value was said
to be an outlier.

Elasticity of Inter-temporal Substitution
(EIS) “One of the important determinants of the re-
sponse of saving and consumption to the real interest
rate is the elasticity of inter-temporal substitution. That
elasticity can be measured by the response of the rate of
change of consumption to changes in the expected real
interest rate” (Hall, 1988). Most IAMs are based on a
value of inter-temporal substitution rate.

Emissions Trading Systems (ETS) Mont-
gomery (1972) developed a model to define for each firm
a single valued function which associate a cost with an
emission rate. His modeling was based on the following
ideas:

• n agents emitting ei for a vector of output Y =
(yi1, ..., yiR), calibrated on optimal inputs;

• A cost function Gi(Y, ei). The cost, Fi(ei), of
adopting the emission ei is defined as the dif-
ference between its unconstrained maximum of
profit and its profits when emission equal ei;

• m location suffering the consequences of the pol-
lution qi, which is defined as a linear combina-
tion of the emissions. The relationship between e
and q is given by a diffusion matrix H, such that:
q =H ⋅ e;

• To define the efficient emission vector, the prob-
lem is to choose, E = (e1, ..., en) minimizing

∑i Fi(ei) subject to E ⩾ 0 and EH ⪕ Q∗;

• Then the market is constructed introducing li-
censes (see Carbon Credit), such that the posses-
sion of licenses confers the right to carry a certain
average rate of emission, Li = (li1, ..., lik).

Equilibrium Climate Sensitivity (ECS)
Uncertainty is not a concept restricted to economical
variables. Our short knowledge of the climate and
Atmosphere-Ocean Global Circulation currents leaves
space to a range of uncertainty concerning climate pa-
rameters that are not known. The most important pa-
rameter is the Equilibrium Climate Sensitivity (ECS).
This parameter represents the equilibrium change in
global mean near-surface atmospheric temperature that
would result from a sustained doubling of the CO2eq
atmospheric concentration. Olson et al. (2012) set the
interval [1.1,11.2] (in °C per carbon equivalent doubling).
They used Bayesian approach, Gaussian process emula-
tor and Monte Carlo estimations to infer, similarly to
other studies, the most likely distribution of this param-
eter.
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A uniform distribution was plotted as a proxy for
Aldrin et al. (2012) curve but most studies demonstrated
a rather skewed distribution with long tail for higher cli-
mate sensitivity. Oslon et al. (2012) for instance used a
product of normal inverse Gaussian distribution (NIG).
The equilibria given above represents proxies of the dis-
tribution obtained by Olson et al. (2012) and Aldrin et
al. (2012) (α = 0).

Green Bonds (GB) “are any type of bond in-
strument where the proceeds will be exclusively applied
to finance or re-finance, in part or in full, new and/or
existing eligible Green Projects (see Section 1 Use of Pro-
ceeds) and which are aligned with the four core compo-
nents of the GBP142” (Green Bonds Principles, 2018).
These are the currently types of green bonds defined in
the GBP:

• Standard green use of proceeds bond: a standard
debt obligation answering the GBP requirement.

• Green revenue bond: a non-recourse-to-the-issuer
debt obligation aligned with the GBP in which the
credit exposure in the bond is to the pledged cash

142The full description is available here: https://www.icmagroup.org/assets/documents/Regulatory/Green-
Bonds/June-2018/Green-Bond-Principles---June-2018-140618-WEB.pdf.
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flows of the revenue streams, fees, taxes etc., and
whose use of proceeds go to related or unrelated
Green Project(s).

• Green project bond: a project bond for a single or
multiple green projects for which the investor has
direct exposure to the risk of the projects with or
without potential recourse to the issuer, and that
is aligned with the GBP.

• Green securitised bond: a bond collateralised by
one or more specific green projects, including but
not limited to covered bonds, ABS, MBS, and
other structures; and aligned with the GBP. The
source of repayment is the cash flows of the assets.

Green bonds used to be mostly issued by investment
bank but the issuer profile is slightly evolving and
spreading to other actors143.

Emissions Trading Systems (ETS) are a
market-based systems where the total amount of emis-
sion is capped and restricted (see Carbon Budget) in
order to reduce global GHG emissions. This type of cap
and trade program allows a flexible environmental reg-
ulation while exposure to regulation risk rely on more
uncertainty: “we find that policy uncertainty forces or-
ganizations to focus their responses on short-term invest-
ments and dealing with that very uncertainty, thereby
precluding the development of green capabilities and pre-
venting flexible regulations from achieving their intended
policy results” (Teeter and Sandberg, 2017). The system
allows economic agent to trade their emission permit or
allowances on the market, in the case of GHG emission
we often speak of Carbon Credit. The one willing to
increase its emission would therefore have to ‘buy’ an
allowance from the ones willing to sell them. The re-
maining and decreasing budget or ‘cap’ increases the
prices answering the law of supply and demand.

Indirect Emissions Emissions that are a conse-
quence of the activities within well-defined boundaries
of, for instance, a region, an economic sector, a company
or process, but which occur outside the specified bound-
aries. For example, emissions are described as indirect if
they relate to the use of heat but physically arise outside
the boundaries of the heat user, or to electricity produc-
tion but physically arise outside of the boundaries of the
power supply sector (IPCC, 2014; WG III).

Induced Emissions (Ie) by financial activities
are the weighted emissions over cross-asset universes
arising from the activities financed. The quantification

of these are of prior importance for asset managers to
assess the impact of their investment strategy on the
environment (Rose, 2014). In his thesis Rose defined 3
main objectives: (i) definition of green funds and market-
ing (through green business risk and opportunity anal-
ysis, etc.), (ii) measure of the contribution in the fight
against climate change and (iii) carbon risks approxi-
mation. The methodological issues “bottom-up vs. top-
down” is generally a concern to properly account induced
emissions.

Intergovernmental Panel on Climate
Change (IPCC) is an intergovernmental scientific
panel of the United Nations committed to develop global
projection concerning climate change, and its social, po-
litical and economic impacts.

Keynesian Economics are theories that empha-
sis the influence of aggregated demand in the short-run.
The main direction these theories gives is that monetary
and fiscal policy action by government or central banks
can stimulate economic activity and stabilize output over
the business cycle.

Knowledge Factor This factor reflects the tech-
nical progress. The way the knowledge factor A (t) is
introduced matters. Moreover, the evolution of this pa-
rameter significantly affects climate integrated economic
modeling. In Equation (1) on page 9 we considered the
progress to be Harrod-neutral meaning that it affects
the effectiveness of labor. This factor could also enter
in the form Y (t) = F (A (t)K (t) , L (t)), called capital
augmenting or Y (t) = A (t)F (K (t) , L (t)) where the
process is said to be Hicks-neutral, which is adapted to
describe an invention which raise the marginal produc-
tivity of labor and capital in same proportion. In this
form, the progress is exogenous to the economic system.
Regardless of how the technical progress is introduced,
there will be criticism and endogeneity issues and the
academic literature has commented extensively on the
effect of this parameter. For instance, some have criti-
cized the later insertion of the productivity factor (ex-
ogenous case):

“Technological progress is intimately de-
pendent on economic phenomena. The ev-
idence suggests that society may indeed af-
fect the allocation of inventive resources
through the market mechanism somewhat
as it affects the allocation of economic re-
sources generally. If this is true, then

143https://unfccc.int/sites/default/files/resource/GreenBonds.pdf.
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technological progress is not an indepen-
dent cause of socio-economic change, and
an interpretation of history as largely the
attempt of mankind to catch up to new
technology is a distorted one” (Schmook-
ler, 1962, page 1).

Leakage or (Carbon Leakage) represents the effect
of reported emission from a regulated country/sector to
country without regulation. It is “a phenomena whereby
the reduction in emissions (relative to a baseline) in a
jurisdiction/sector associated with the implementation
of mitigation policy is offset to some degree by an in-
crease outside the jurisdiction/sector through induced
changes in consumption, production, prices, land use
and/or trade across the jurisdictions/sectors. Leakage
can occur at a number of levels, be it a project, state,
province, nation or world region” (IPCC, 2014).

Marginal Investment Cost (MIC) “We call
Marginal Investment Cost (MIC) the cost of the last
unit of investment in low-carbon capital c′i(xi,t)” (Vogt-
Schilb et al., 2013). The idea is to model the “the eco-
nomic efforts being oriented towards building and de-
ploying low-carbon capital in a given sector at a given
point in time. While one unit of investment at time t
in two different sectors produces two similar goods – a
unit of low-carbon capital that will save GHG from t on-
wards – they should not necessarily be valued equally”
(Vogt-Schilb et al., 2013). This concept might allow to
define a form of decarbonization premium to some ex-
tent i.e. the sooner we invest on low-carbon capital in
the most carbon intensive sectors to more we can expect
our investment to be reevaluated.

Mitigation (of Climate Change) A human
intervention to reduce the sources or enhance the sinks
of GHG. This report also assesses human interventions
to reduce the sources of other substances which may con-
tribute directly or indirectly to limiting climate change,
including, for example, the reduction of particulate mat-
ter emissions that can directly alter the radiation balance
(e.g., black carbon) or measures that control emissions
of carbon monoxide, nitrogen oxides, Volatile Organic
Compounds and other pollutants that can alter the con-
centration of tropospheric ozone which has an indirect
effect on the climate. A Mitigation scenario is a plau-
sible description of the future that describes how the
(studied) system responds to the implementation of mit-
igation policies and measures (IPCC, 2014).

NAMEA One of the major issue is the unequal pol-
icy context in terms of carbon pricing. The main chal-

lenge most model fail to take account of if the account-
ability issues and potential leakage. To give a prior ap-
proach of this complexity in a more concrete case, we
can rely for on accounting methods such as the Na-
tional Accounting Matrix including Environmental Ac-
counts, which combines Leontief (1970) conventional na-
tional input-output accounting approach and environ-
mental physical accounts. It is an environmental ac-
counting framework developed by Statistics Netherlands
at the end of the 1980s (De Haan and Keuning, 1996;
Keuning et al., 1999). It consists of a conventional na-
tional accounting matrix extended with environmental
accounts in physical units. They are also called ‘hybrid ’
accounts. The original idea of Leontief matrices is to de-
scribe the economic equilibrium of n products and ser-
vices, over n sectors. The following equation translate
the supply (left side) and demand (right side) equilib-
rium for (i, j) ∈ (n,n) (Lenglart et al., 2010):

[Yi] + [Smi] + [Ti] + [Mi] = [IDij] ⋅ 1 + [Di]

For each product or service, the cost are defined by the
sum of the production Pi, sales margin Smi taxes Ti and
importation Mi, while the demand is defined as the sum
of the intermediate consumption IDij of the user indus-
tries and the final demand Di. The technical coefficients
Ai,j , defines the production of product i required for the
production of one unit of product j. Then, the produc-
tion Y and importation M to answer the final demand
are defined:

Ai,j = IDij

Yj

Y = (I −Ad)−1 ⋅Dd

M = Am ⋅ (I −Ad)−1 ⋅Dd +Dm

Based on this model, we will define a matrix calculation
process allowing to find any country induced emissions.
The following equations are based on the strong assump-
tion that “emission related to the sector j is structurally
proportional to the quantity Yj it produces” (Lenglart et
al., 2010), the introduction of the CO2eq emitted on the
domestic territory, Ed = (Edj ) let us define the COd2eq
implied by the domestic production. Given the notation
of Lenglart et al. (2010), ⟨ ⋅ ⟩ is the operator transform-
ing a column vector into a diagonal square matrix. We
can define the domestic emissions related to the final
demand:

COd2eq = (COd2eq,j) = (E
d
i

Yj
) = ⟨Y ⟩−1 ⋅Ed

ED,d = ⟨Dd⟩ (I − tAd)−1 ⋅COd2eq
On the other hand, emissions induced by importations
have to be assessed. The same process of accounting
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can be implemented, which require to model the COd∗2eq
matrix representing the overall emission of CO2eq every-
where excluding the domestic territory (Equation (36)).
Therefore, for the c exporting countries, we must com-
pute the emission due to the importation (Equation
(37)):

COd∗2eq = ∑
c

⟨πc⟩ (I − tAc)−1 ⋅COc2eq (36)

Em = ⟨M⟩ (I − tAd∗)−1 ⋅COd∗2eq (37)

ED,m = MD (I − tAd∗)−1 ⋅COd∗2eq (38)

= (⟨Dd⟩ (I − tAd)−1 ⋅ tAm + ⟨Dm⟩) ⋅

COd∗2eq

πc is a column vector which designs the proportion
of the importation from the country c in the over-
all importation of the country considered, which im-
ply that:∑c ⟨πc⟩ = I. The two components (Equation
(38)) correspond to emissions related to intermediary
consumption, and the ones aimed at answering the fi-
nal demand.

Neoclassical Economics describe individuals
maximizing their utility (or profit) given their rational
expectation in a market defined by supply and demand
law.

Physical Risks are environmental risk factors that
can be opportunity, uncertainty and hazard-based risks.
They are fundamental in the current economic landscape
were most are becoming aware of the coming changes.
They include chronic weather changes, affecting for in-
stance agriculture or tourism, and potentially more fre-
quent and extreme events and climate disasters: flood-
ing, sea level rise, wildfires, storms, etc. Real estate is
also particularly sensitive to the so-called physical risks
and investors with assets in coastal areas might for in-
stance, want to assess their assets at risk flooding.

Pigouvian Taxes “is the generic term for taxes
designed to correct inefficiencies of the price system that
are due to negative external effects” (Sandmo, 2008).
Following, “Pigou (1920), optimal usage of the atmo-
sphere’s capacity to absorb GHGs can be obtained, in
both theory and practice, when individuals are charged
the full social cost of each ton they emit into the at-
mosphere, or conversely the benefits that accrue to so-
ciety with the reduction of GHG emissions by one ton.
The cost of putting an additional ton of CO2 into the
atmosphere at any given time t, assuming an optimal
emissions reductions pathway in the future, is commonly
known as the optimal CO2 price” (Daniel et al., 2018).

Rational Expectations Rational expectations
in economics is the hypothesis stating that agents’ pre-
dictions of the future is based on the information avail-
able and what they learned from past trends.

Return to Scale Economic production functions
are defined on the basis of input factors such as labor and
capital. For short-term projections, this type of macroe-
conomic model allows forecasts to be made by extending
the time series trends observed for input factors, most
commonly using the Cobb-Douglas function. In the long
run, these input factors become variable. In thise con-
text, the return to scale is defined as the change in output
as factor inputs change in the same proportion. In eco-
nomics, we use constant returns to scale, which means
that the output increases in the same proportion to the
increase in all the inputs or factors of production. This is
done for the sake of representativeness. This assumption
is explained by Romer (2006) as follows:

“In a very small economy, there are prob-
ably enough possibilities fo further special-
ization that doubling the amounts of cap-
ital and labor more than doubles the out-
put. The Solow model assumes, however,
that the economy is sufficiently large that,
if capital and labor double, the new inputs
are used in essentially the same way as the
existing inputs, and thus that output dou-
bles” (Romer, 2006, page 10).

This condition has major consequences as it affects the
convergence of linear programing algorithms and can
represent a pitfall when integrating endogenous techni-
cal change. Indeed, a nested structure with constant
elasticity of substitution production function can lead
optimizers to multiple local solutions with questionable
global significance:

“Linear programming methods, as fre-
quently used in CGE models, are best suited
to solving problems with a single maximum.
This is usually guaranteed by the adoption
of constant or decreasing returns to scale
in production functions. The introduction
of increasing returns to scale for a part of
the model may generate local minima and
maxima and has been found in some cases
to destabilize the model, such that finding
a solution depends critically on the param-
eter values used” (Khöler, 2006, page 46).
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Science Based Target (SBT) Emissions re-
ductions targets adopted by companies to reduce GHG
emissions are considered “science-based” if they are
in line with the level of decarbonization required
to keep global temperature increase below 2°C com-
pared to pre-industrial temperatures, as described by
the IPCC144. For more information go to: https://

sciencebasedtargets.org/methods/. The eligibility
criteria gather (reproduced from the website):

• Boundary: The target must cover company-wide
Scope 1 and Scope 2 emissions and all relevant
GHGs as required in the GHG Protocol Corpo-
rate Standard.

• Time frame: The target must cover a minimum
of 5 years and a maximum of 15 years from the
date of announcement of the target.

• Level of ambition: At a minimum, the target will
be consistent with the level of decarbonization re-
quired to keep global temperature increase to 2°C
compared to pre-industrial temperatures, though
we encourage companies to pursue greater efforts
towards a 1.5° trajectory.

• Scope 3: An ambitious and measurable Scope 3
target with a clear time-frame is required when
Scope 3 emissions cover a significant portion
(greater than 40% of total scope 1, 2 and 3 emis-
sions) of a company’s overall emissions. The tar-
get boundary must include the majority of value
chain emissions as defined by the GHG Protocol
Corporate Value Chain (Scope 3) Accounting and
Reporting Standard (e.g. top 3 categories, or 2/3
of total scope 3 emissions).

• Reporting: The company will disclose company-
wide GHG emissions inventory on an annual ba-
sis.

Social Cost of Carbon (SCC) designs “a first
estimate of the Pigou tax that should be placed on car-
bon dioxide emissions. Indeed, if the SCC is computed
along a trajectory in which the marginal costs of emis-
sion reduction equal the SCC, the SCC is the Pigou tax”
(Tol, 2008; Carbon Risk; Pigouvian Tax). It can also
be defined as the net present value of climate damages
(IPCC, 2014). The formal definition in DICE is given on
page 27 but broadly correspond to the ratio of standard
variations of consumption on emissions.

Stranded Assets are assets that have suffered
from unanticipated or premature write-downs, devalu-
ations or conversion to liabilities. They can be caused

by a range of environment-related risks and these risks
are poorly understood and regularly mis-priced, which
has resulted in a significant over-exposure to environ-
mentally unsustainable assets throughout our financial
and economic systems. Current and emerging risks re-
lated to the environment represent a major discontinuity,
able to profoundly alter asset values across a wide range
of sectors. Some of these risk factors include: (Caldecott
et al., 2014).

• Environmental challenges (e.g. climate change,
water constraints)

• Changing resource landscapes (e.g. shale gas,
phosphate)

• New government regulations (e.g. carbon pricing,
air pollution regulation)

• Falling clean technology costs (e.g. solar PV, on-
shore wind)

• Evolving social norms (e.g. fossil fuel divestment
campaign) and consumer behavior (e.g. certifica-
tion schemes)

• Litigation and changing statutory interpretations
(e.g. changes in the application of existing laws
and legislation)

Tipping Point A level of change in system proper-
ties beyond which a system reorganizes, often abruptly,
and does not return to the initial state even if the drivers
of the change are abated. For the climate system, it
refers to a critical threshold when global or regional
climate changes from one stable state to another sta-
ble state. The tipping point event may be irreversible
(IPCC, 2014).

Turnpike properties have been established long
time ago in finite-dimensional optimal control problems
arising in econometry. They refer to the fact that, un-
der quite general assumptions, the optimal solutions of a
given optimal control problem settled in large time con-
sist approximately of three pieces, the first and the last
of which being transient short-time arcs, and the middle
piece being a long-time arc staying exponentially close to
the optimal steady-state solution of an associated static
optimal control problem (Trelat and Zuazua, 2014).

144https://sciencebasedtargets.org/wp-content/uploads/2017/01/EligibilityCriteria.docx.pdf.
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Tragedy of the Commons “The tragedy of the
commons reappears in problems of pollution. Here it
is not a question of taking something out of the com-
mons, but of putting something in – sewage, or chem-
ical, radioactive, and heat wastes into water; noxious
and dangerous fumes into the air – and distracting and
unpleasant advertising signs into the line of sight. The
calculations of utility are much the same as before. The
rational man finds that his share of the cost of the wastes
he discharges into the commons is less than the cost of
purifying his wastes before releasing them. Since this is
true for everyone, we are locked into a system of ‘fouling
our own nest’ so long as we behave only as independent,
rational, free-enterprisers” (Hardin, 1968).

Vector Autoregression (VAR) is a stochastic
autoregressive (AR) model used to express the expected
value of one or multiple variables based on times-series
analysis. The lagged values for the explanatory variables
are used in the model. The main advantage of these type
of modeling, applicable to forecasting problems, is that
they a priori require no knowledge about the interdepen-
dencies and influences between variables in the model.
By contrast, the DICE is a model were each relationship
between variables need to be a priori expressed before
running the model. The VAR models are often used in
the field of finance because of they strong empirical ap-
plications. Concretely, this type of models usually lead
to this form of equation:

y (t) =
p

∑
i=1

Aiy (t − i) + ε (t)

where y (t) is the vector of variable we wish to track, ε (t)
is an error term, p (t) is a lag parameter and A is a ma-
trix representing the influence of the lagged values of the
variables in the vector y on its value at t. These models,
similarly as the ones with a fix a parametrized structure
like the DICE, are blind to any disruptive change.
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